
Chapter 7 , Section 1 of ${\it Contemporary\ Linear\ Algebra}$ by Anton and Busby

1. Which one of the following sets is not a basis for the plane defined by the parametric equations

$$x = s + t, y = s - t, z = 3s + 2t, s, t \in \mathbb{R}$$
?

- $\{(1,1,3),(1,-1,2)\}$
- $\{(1,3,4),(5,-3,11)\}$
- $\{(1,-3,1),(0,2,1)\}$
- $\{(-1,5,0),(3,1,8)\}$
- (3, -5, -5), (2, 4, 7)

Next Question

- 3. Which of the following is a basis for the hyperplane
- $(0, -3, 5, 7)^{\perp}$?
- $\{(1,1,0,0),(0,\frac{5}{3},1,0),(0,\frac{7}{3},0,1)\}$ $\{(1,0,0,0),(1,\frac{5}{3},1,1),(0,\frac{7}{3},0,1)\}$
- $\{(1,0,0,0),(0,\frac{5}{3},1,0),(1,\frac{7}{3},1,1)\}$ $\{(1,0,0,0),(0,\frac{5}{3},1,0),(0,\frac{7}{3},0,1)\}$ $\{(1,0,0,0),(1,\frac{5}{3},1,0),(0,\frac{7}{3},1,1)\}$

- 4. The vectors (1,3,0,2), (0,-1,2,2), and (-1,2,2,0) form a basis for the hyperplane $(x_1,x_2,x_3,x_4)^{\perp}$. Given that $x_4=5$, find x_1 .
- -10
- **▶**B -5
- → C
- **5**
- 10

Next Question

5. Let W be a subspace of \mathbf{R}^m and let $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n$ be vectors in W. Let P, Q and R be the following statements:

 $P : \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\} \text{ span } W$

Q: $\dim(W) \leq n$

 $R : \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ are linearly independent.

Find the true statement.

- \square If Q then P
- ldots If P then Q
- If R then P
- \square If R then Q
- If P then R

No more questions

Back

Wrong...try again