
Chapter 7, Section 6 of *Contemporary Linear Algebra* by Anton and Busby

Let

$$A = \begin{bmatrix} 1 & -2 & 4 & -1 \\ -2 & 4 & 3 & 1 \\ -4 & 8 & 17 & 1 \\ -1 & 2 & 0 & 2 \end{bmatrix}.$$

- 1. Find the pivot columns of A.
- 1, 2, 3
- 1,2
- 1, 2, 4
- 1,3
- 1, 3, 4.

2. Find the pivot columns of A^T .

- 1, 2, 3
- **I**, 2
- 1, 2, 4
- 1,3
- 1, 3, 4

3. Find B, given that the non-zero rows in the reduced row-echelon form of B are

$$\begin{bmatrix} 1 & 0 & -3 & 0 & 1 \\ 0 & 1 & 2 & -1 & -3 \end{bmatrix} \text{ and that } \begin{bmatrix} 2 & 3 \\ -3 & 1 \\ -2 & 1 \\ 1 & 1 \end{bmatrix}$$

are the first two columns of B. See next page for answers

$$\begin{bmatrix} 2 & 3 & 0 & -3 & 1 \\ -3 & 1 & 0 & 3 & -6 \\ -2 & 1 & 8 & -1 & 5 \\ 1 & 1 & -1 & 7 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 0 & -3 & -7 \\ -3 & 1 & 11 & -1 & -6 \\ -2 & 1 & 8 & -1 & -5 \\ 1 & 1 & -1 & -1 & -2 \end{bmatrix} \quad \begin{bmatrix} 2 & 3 & 0 & -3 & 1 \\ -3 & 1 & 10 & -1 & -2 \\ -2 & 1 & 2 & -1 & 4 \\ 1 & 1 & -1 & -1 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 3 & -3 & -7 \\ -3 & 1 & -1 & 0 & -6 \\ -2 & 1 & 0 & -1 & -5 \\ 1 & 1 & -1 & 0 & -2 \end{bmatrix} \quad \begin{bmatrix} 2 & 3 & 0 & 0 & 0 \\ -3 & 1 & 0 & -1 & 0 \\ -2 & 1 & 8 & 0 & 0 \\ 1 & 1 & 0 & -1 & 0 \end{bmatrix}$$

- 4. Suppose E and F are square matrices. Then x is in both $\operatorname{null}(E^T)$ and $\operatorname{null}(F^T)$ if and only if
- $x \in \text{null}(E^T + F^T)$
- $x \in \text{null}([E|F]^T)$
- $x \in \text{null}(EF^T)$
- $x \in \text{null}([E^T|F^T])$
- $x \in \text{null}((E F)^T)$

5. Suppose the row-reduced echelon form of [D|I] is $\begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix}$ in

block form, where X has no zero row and $\begin{bmatrix} Y \\ Z \end{bmatrix}$ is square. Then

- null $(D^T) = \text{row}(Z)$
- null $(D^T) = \operatorname{col}(Z)$
- null (D^T) = null(Z)
- null (D^T) = null (Z^T)
- none of these.

No more questions

Back

Wrong...try again