Chapter 7, Section 9 of *Contemporary Linear Algebra* by Anton and Busby

Next Page

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Next Question

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2.Suppose Gram-Schmidt orthogonolisation applied to

$$(-1, 2, 1), (2, -1, 1), (1, 1, -2)$$

produces $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$. Then \mathbf{v}_3 is

(1,0,1)
(
$$\frac{4}{3},\frac{4}{3},-frac43$$
)
(1,-1,0)
($(\frac{4}{3},-\frac{4}{3},frac43$)
(2,2,0)

Next Question

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3. Express $\mathbf{x} = (-12, 1, 1, 6)$ in the form $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$ where \mathbf{x}_1 is in the hyperplane $(-1, 1, 1, 4)^{\perp}$ and \mathbf{x}_2 is in its orthogonal complement.

Next Question

4. Find $\operatorname{proj}_W(1,0,0,0,0,0)$ where W is the span of

$$(3, -2, 1, 1, 3, -1), (3, 1, 2, 1, -3, 1), (1, 3, 1, -3, 1, -2).$$

Next Question

5. Let W be a subspace of \mathbb{R}^n . Let B be an orthonormal basis of W, and the set C an orthonormal basis of W^{\perp} . Put $D = B \cup C$, so D is the set of all vectors in B and C. The D is

an orthonormal basis of Rⁿ;

an orthogonal basis of Rⁿ but not necessairly an orthonormal basis;

••• a basis of R^n but not necessarily an orthogonal basis;

•• a linearly independent subset of R^n but not necessairly a basis;

•• a subet of R^n nut not necessarily a linearly independent subset.

No more questions

Wrong...try again

Back

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ