MATH	1600B	Linear	Algebra
------	-------	--------	---------

Page 1 of 2

Quiz 1, 20 minutes

Name:	ID Number:	

(Please Print)

1. For each statement below, determine whether the given statement is TRUE (*i.e.* always true) or FALSE (*i.e.* not always true). Provide a short justification for your response.

[2 marks]

(a) If \vec{u} and \vec{v} are unit vectors, then so is $\vec{u} + \vec{v}$.

False
$$\ddot{\mathcal{L}} = [1,0]$$
 $\dot{\mathcal{L}} = [0,1]$ (both unit vectors)
but $||\dot{\mathcal{L}} + \dot{\mathcal{L}}|| = ||(||1||1|| = \sqrt{2}$

[2 marks] (b) If \vec{u} and \vec{v} are parallel vectors with \vec{u} non-zero, then $\text{proj}_{\vec{u}}(\vec{v})$ is the zero vector.

False
$$\vec{u} = [1,1]$$
, $\vec{v} = [2,2]$ parallel vectors
but $pr\hat{q} = \frac{4}{2}[1,1] = [2,2] + [0,0]$

[3 marks] 2. Consider a code with code words in \mathbb{Z}_6^3 and check vector $\vec{c} = [3, 2, 1]$. Compute the check digit d that makes [1, 2, d] a valid code word.

Need
$$\vec{J} \cdot \hat{c} = 0$$
 in \mathbb{Z}_6
 $[1,2,d] \cdot [3,2,\Pi] = 3+4+d = 7+d = 1+d$ in \mathbb{Z}_6
So $d=5$

[3 marks] 3. Solve the following equation for \vec{x} in terms of \vec{u} and \vec{v} :

$$\vec{x} - \vec{u} = 2(\vec{x} + 3\vec{u}) - \vec{v}$$

$$\vec{\chi} - \vec{\lambda} = 2\vec{\chi} + 6\vec{\chi} - \vec{v}$$

$$- \vec{\lambda} - 6\vec{\lambda} + \vec{v} = 2\vec{\chi} - \vec{\chi}$$

$$\vec{v} - 7\vec{\lambda} = \vec{\chi}$$