Math	1600B	Linear	Algebra
------	-------	--------	---------

Page 1 of 2

Quiz 2, 20 minutes

Name:		ID Number:	1 118
	(Please Print)		

1. For each statement below, determine whether the given statement is TRUE (that is, always true), or FALSE (that is, always false). Provide a short justification for your response.

 $\frac{2}{\text{marks}}$

(a) For any nonzero vectors $N_1, N_2 \in \mathbb{R}^3$, $N_1 \times N_2$ is orthogonal to $N_1 + N_2$.

True
$$(N_1 \times N_2) \pm N_1 \le (N_1 \times N_2) \pm N_2$$

 $SO(N_1 \times N_2) \cdot N_1 = 0 = (N_1 \times N_2) \cdot N_2$
Then $(N_1 \times N_2) \cdot (N_1 + N_2)$
 $= (N_1 \times N_2) \cdot N_1 + (N_1 \times N_2) \cdot N_2$
 $= 0 + 0$
 $= 0$

2 marks (b) The planes in \mathbb{R}^3 with equations 2x - 5y + 3z = 5 and 6x - 15y + 9z = 23, respectively, are parallel.

True
$$\vec{n}_1 = [2, -5, 3]$$

$$\vec{n}_2 = [6, -15, 9]$$

$$= \vec{n}_2 = 3\vec{n}_1 \quad \therefore \text{ paralle} 1$$

- 3 marks
- 2. Find a vector equation for the line in \mathbb{R}^3 that passes through [1, -1, 4] and is orthogonal to both [2, 3, -1] and [-1, 2, 1].

$$\vec{x} = \vec{p} + t \vec{d}$$
 for $t \in \mathbb{R}$.
 $\vec{d} = [2,3,-1] \times [-1,2,1]$
 $= [5,-1,7]$
So $\vec{x} = [1,-1,4] + t[5,1,7]$

 $3 \\ \text{marks}$ 3. Solve the following system of linear equations:

$$2x - 3y = 3$$
$$4x + 3y = 8$$

$$\begin{bmatrix} 2 & -3 & | & 3 \\ 2 & -3 & | & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -3 & | & 3 \\ 0 & 9 & | & 2 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & -3/2 & | & 3/2 \\ 0 & 1 & | & 2/4 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & | & 11/6 \\ 0 & 1 & | & 2/4 \end{bmatrix}$$

$$50 \quad 7C = 11/6, \quad Y = \frac{2}{9}$$