Math 1600B Linear Algebr	Math	1600B	Linear	Algebra
--------------------------	------	-------	--------	---------

Page 1 of 2

Quiz 2, 20 minutes

Name:	,	ID Number: _	· · · · · · · · · · · · · · · · · · ·
	(Please Print)		• /

1. For each statement below, determine whether the given statement is TRUE (that is, always true), or FALSE (that is, always false). Provide a short justification for your response.

2 marks (a) For any real numbers a, b, c, d, the set of solutions to the system of linear equations

$$ax + by = 0$$
$$cx + dy = 0$$

is infinite.

F fora=1,b=0, C=0,d=1
we have 10 x=0, y=0 (unique sol=)

2 marks (b) The vector [1,3,2] is a direction vector for the line of intersection of the planes with equations 2x - 4y + 3z = 3 and 7x + 3y - 5z = 2, respectively.

F the line of intersection lines on both planes

So the direction vector of this line is to

the normals of both plane

but [1,3,2]. [2,-4,3]+0

{ [1,3,2].[7,3,-5]+0

- 3 marks
- 2. Find a vector equation for the line in \mathbb{R}^3 that passes through both [1, -1, 3] and [2, 3, -1].

$$\vec{x} = \vec{p} + t \vec{a} + \sigma t \in \mathbb{R}$$
 $\vec{d} = [2, 3, +] - [1, +, 3]$
 $= [1, 4, -4]$

So $\vec{x} = [\frac{1}{3}] + t [\frac{1}{4}]$

3. Find the distance from the point Q = [1, 3, 1] to the plane with equation 2x + 4y + z = 2.