Name:	*	ID Number:	
	(Please Print)		

1. Determine whether the given statement is TRUE (i.e. always true) or FALSE (i.e. not always true). Provide a short justification for your response.

[2 marks]

Let A be a 3×3 matrix. If \vec{v}_1 and \vec{v}_2 are two linearly independent eigenvectors of A, then they correspond to different eigenvalues.

$$F = A = \begin{cases} 0002 \\ 0002 \end{cases} \text{ e-walkes are } \beta = 1, 2$$

$$F = \text{null } (A - I) = \text{null } [0000] = \text{span } [000] = \text{span } [00$$

2. Let
$$A = \begin{bmatrix} -3 & -12 & 6 \\ 2 & 7 & -2 \\ 0 & 0 & 3 \end{bmatrix}$$
 be a 3×3 matrix.

The characteristic polynomial of A is $-\lambda^3 + 7\lambda^2 - 15\lambda + 9$.

[4 marks]

(a) Show that 3 is an eigenvalue of A, and find a basis for the corresponding eigenspace. Determine the algebraic and geometric multiplicities of 3.

$$dot(A-3I) = dnar ply evaluated at $\lambda = 3$

$$= -(3)^{3} + 7(3)^{2} - 15(3) + 9 = 0$$

$$= -(3)^{3} + 7(3)^{2} - 15(3) + 9 = 0$$

$$= -(3)^{3} + 7(3)^{2} - 15(3) + 9 = 0$$

$$= -(3)^{3} + 7(3)^{2} - 15(3) + 9 = -(3)^{3} - (3)^{3}$$
So 3 has alg mult 2 of 3 geo mult 3 .$$

[2 marks]

(b) Find the other eigenvalues of A and bases for the corresponding eigenspaces.

[2 marks]

(c) Determine whether or not A is diagonalisable, and if it is, find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.

Diagonalizable : total geo mult = 3
$$P = \begin{bmatrix} 6 & 2 & 3 \\ 6 & 5 & 3 \end{bmatrix} \quad D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix}$$