Definition 1.1.2. An **ordered** *n***-tuple** is a sequence of *n* real numbers (v_1, v_2, \ldots, v_n) . This is also called a **vector**. \mathbb{R}^n denotes the set of all ordered *n*-tuples and is called *n***-space**.

Theorem 1.1.5. *For* $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ *and* $k, l \in \mathbb{R}$:

 (a) **u** + **v** = **v** + **u** (*b*) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (c) **u** + **0** = **u** = **0** + **u** (d) **u** + $(-u) = 0$ (e) $(k+l)\mathbf{u} = k\mathbf{u} + l\mathbf{u}$ (f) $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$ (g) $k(l\mathbf{u}) = (kl)\mathbf{u}$

(h) 1**u** = **u**

SECTION 1.2: DOT PRODUCT AND ORTHOGONALITY

Definition 1.2.1. If $\mathbf{v} = (v_1, v_2, \dots, v_n)$ is a vector in \mathbb{R}^n , then the **length** of **v**, also called the **norm** of **v** or the **magnitude** of **v**, is

$$
||v|| := \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}.
$$
\n(3)

Definition 1.2.5. For $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, the **dot product** is the scalar

$$
\mathbf{u} \cdot \mathbf{v} := u_1 v_1 + \dots + u_n v_n. \tag{12}
$$

Note.

$$
\mathbf{v} \cdot \mathbf{v} = v_1 v_1 + \dots + v_n v_n = ||\mathbf{v}||^2,
$$
\n(13)

so

$$
\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}.\tag{14}
$$

Theorem 1.2.8. If **u** and **v** are nonzero vectors in \mathbb{R}^2 or \mathbb{R}^3 , then

$$
\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta,\tag{15'}
$$

where θ *is the angle between them* $(0 \leq \theta \leq \pi)$ *.*

Theorem 1.2.12 (Cauchy-Schwarz inequality). *For* $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$,

$$
|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| \, ||\mathbf{v}||. \tag{22}
$$

Definition. The **angle** θ between nonzero vectors **u**, **v** $\in \mathbb{R}^n$ is *defined* to be

$$
\theta := \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}\right). \tag{19}
$$

In particular, **u** and **v** are said to be **orthogonal** (or **perpendicular**) if $\mathbf{u} \cdot \mathbf{v} = 0$ (so $\theta = \pi/2 = 90^{\circ}$).

Definition 1.2.10. Vectors **u** and **v** in \mathbb{R}^n are **orthonormal** is they are orthogonal and have length 1. A set of vectors is **orthonormal** is each vector in the set has length 1 and each pair of vectors is orthogonal.

Basic Properties of dot product.

Recall: $\mathbf{u} \cdot \mathbf{v} := u_1v_1 + \cdots + u_nv_n$.

Theorem 1.2.6. *For* $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ *and* $k \in \mathbb{R}$:

 (a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ (*b*) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ (and the reverse) (c) $(k\mathbf{u}) \cdot \mathbf{v} = k(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (k\mathbf{v})$ (d) **v** \cdot **v** > 0 (*e*) $\mathbf{v} \cdot \mathbf{v} = 0$ *if and only if* $\mathbf{v} = \mathbf{0}$ *.*

Theorem 1.2.7.

- (a) $\mathbf{0} \cdot \mathbf{v} = 0 = \mathbf{v} \cdot \mathbf{0}$
- (c) **u** · $(\mathbf{v} \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} \mathbf{u} \cdot \mathbf{w}$ *(and the reverse)*

Theorem 1.2.11 (Pythagorean theorem). *If* $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ *are orthogonal, then*

$$
\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2. \tag{18}
$$

Theorem 1.2.13 (triangle inequality). For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$,

$$
\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|.\tag{26}
$$

SECTION 1.3: VECTOR EQUATIONS OF LINES AND PLANES

The **general equation** of a line in \mathbb{R}^2 is

$$
Ax + By = C \t (A \t and B \t not both zero).
$$
 (1)

For $\mathbf{x}_0, \mathbf{v} \in \mathbb{R}^2$ or \mathbb{R}^3 , the **vector equation** of the line through \mathbf{x}_0 and parallel to **v** is

$$
\mathbf{x} = \mathbf{x}_0 + t\mathbf{v},\tag{4}
$$

where $-\infty < t < \infty$ is the **parameter**.

If $\mathbf{x} = (x, y, z)$, $\mathbf{x}_0 = (x_0, y_0, z_0)$ and $\mathbf{v} = (a, b, c)$, the **parametric equations** are

$$
x = x_0 + at, \quad y = y_0 + bt, \quad z = z_0 + ct. \tag{7}
$$

(Similar in \mathbb{R}^2 .)

The **point-normal equation** of the plane in \mathbb{R}^3 normal to $\mathbf{n} = (A, B, C)$ and through $\mathbf{x}_0 = (x_0, y_0, z_0)$ is

$$
A(x - x_0) + B(y - y_0) + C(z - z_0) = 0
$$
\n(16)

which when expanded becomes the **general equation**

$$
Ax + By + Cz = D.
$$
\n⁽¹⁷⁾

The **vector equation** of the plane in \mathbb{R}^3 parallel to \mathbf{v}_1 and \mathbf{v}_2 and through $\mathbf{x}_0 = (x_0, y_0, z_0)$ is

$$
\mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2,\tag{20}
$$

where $-\infty < t_1 < \infty$, $-\infty < t_2 < \infty$ are the **parameters**. If $\mathbf{x} = (x, y, z)$, $\mathbf{x}_0 = (x_0, y_0, z_0)$, $\mathbf{v}_1 = (a_1, b_1, c_1)$, $\mathbf{v}_2 = (a_2, b_2, c_2)$, the **parametric equations** of this plane are

$$
x = x_0 + a_1t_1 + a_2t_2
$$

\n
$$
y = y_0 + b_1t_1 + b_2t_2
$$

\n
$$
z = z_0 + c_1t_1 + c_2t_2
$$
\n(22)