Section 2.1: Introduction to systems of linear equations

Elementary row operations.

- 1. Multiply a row through by a nonzero constant.
- 2. Interchange two rows.
- 3. Add a multiple of one row to another.

Section 2.2: Solving linear systems by row reduction

Row echelon form and reduced row echelon form.

- 1. If a row does not consist entirely of zeroes, then the first non-zero number in the row is a 1. We call this a leading 1.
- 2. If there are any rows that consist entirely of zeroes, then they are grouped together at the bottom of the matrix.
- 3. In any two successive rows that do not consist entirely of zeroes, the leading 1 in the lower row occurs further to the right than the leading 1 in the higher row.
- 4. (Reduced REF only) Each column that contains a leading 1 has zeroes everywhere else.

Gaussian and Gauss-Jordan eliminiation.

- Step 1 Locate the leftmost column that does not consist entirely of zeroes.
- Step 2 Interchange the top row with another row, if necessary, to bring a non-zero entry to the top of the column found in Step 1.
- Step 3 Let a be the entry that is now at the top of the column found in Step 1. Multiply the first row by 1/a in order to introduce a leading 1.
- Step 4 Add suitable multiples of the top row to the rows below so that all entries below the leading 1 become zeroes.
- Step 5 Now cover the top row in the matrix and begin with Step 1 applied to the submatrix that remains. Continue in that way until the entire matrix is in row echelon form.
- Step 6 (Gauss–Jordan only) Beginning with the last non-zero row and working upward, add suitable multiples of each row to the rows above to introduce zeroes above the leading 1's.

SECTION 3.2: INVERSES; ALGEBRAIC PROPERTIES OF MATRICES

Theorem 3.2.1. For $a, b \in \mathbb{R}$ and matrices A, B, C we have the following identities whenever the expressions are defined:

$$(a) A + B = B + A$$

(b)
$$A + (B + C) = (A + B) + C$$

$$(c)$$
 $(ab)A = a(bA)$

$$(d)+(e)$$
 $(a \pm b)A = aA \pm bA$

$$(f)+(g) \ a(A \pm B) = aA \pm aB$$

Theorem 3.2.2. For $a \in \mathbb{R}$ and matrices A, B, C we have the following identities whenever the expressions are defined:

$$(a) \ A(BC) = (AB)C$$

$$(b)+(d)$$
 $A(B \pm C) = AB \pm AC$

$$(c)+(e)$$
 $(B\pm C)A=BA\pm CA$

(f)
$$a(BC) = (aB)C = B(aC)$$

Theorem 3.2.3. For $c \in \mathbb{R}$, a matrix A and a zero matrix 0 of appropriate size, we have:

$$(a)+(b) A \pm 0 = 0 + A = A$$

(c)
$$A - A = A + (-A) = 0$$

(d)
$$0A = 0$$

(e) If
$$cA = 0$$
, then $c = 0$ or $A = 0$.

Theorem 3.2.10. For matrices A and B of the appropriate sizes:

$$(a) (A^T)^T = A$$

$$(b)+(c) (A \pm B)^T = A^T \pm B^T$$

(d)
$$(kA)^T = kA^T$$

(e)
$$(AB)^T = B^T A^T$$

Theorem 3.2.12. If A and B are square matrices of the same size, then:

(a)
$$\operatorname{tr}(A^T) = \operatorname{tr}(A)$$

(b)
$$\operatorname{tr}(cA) = c \operatorname{tr}(A)$$

$$(c)+(d) \operatorname{tr}(A \pm B) = \operatorname{tr}(A) \pm \operatorname{tr}(B)$$

(e)
$$tr(AB) = tr(BA)$$

Section 3.3: Elementary matrices; a method for finding A^{-1}

Theorem 3.3.9 (Unifying Theorem). If A is an $n \times n$ matrix, then the following statements are equivalent.

- (a) The reduced row echelon form of A is I_n .
- (b) A is expressible as a product of elementary matrices.
- (c) A is invertible.
- (d) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every vector \mathbf{b} in \mathbb{R}^n .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every vector \mathbf{b} in \mathbb{R}^n .