Definition 3.4.1. Let W be any set of vectors in \mathbb{R}^n .

- (a) W is closed under scalar multiplication if $\mathbf{x} \in W \implies k\mathbf{x} \in W$ for every scalar $k \in \mathbb{R}$.
- (b) W is closed under addition if $\mathbf{x}, \mathbf{y} \in W \implies \mathbf{x} + \mathbf{y} \in W$.
- (c) W is a subspace of \mathbb{R}^n if both hold and W is non-empty.

For vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_s \in \mathbb{R}^n$, the **span** is the set of all linear combinations $t_1\mathbf{v}_1 + \cdots + t_s\mathbf{v}_s$ for all scalars $t_1, t_2, \ldots, t_s \in \mathbb{R}$. It is denoted span $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_s\}$.

Theorem 3.4.2. span $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_s\}$ is a subspace of \mathbb{R}^n .

Definition 3.4.5. A non-empty set of vectors $S = \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_s \in \mathbb{R}^n$ is **linearly independent** if

$$c_1\mathbf{v}_1 + \dots + c_s\mathbf{v}_s = \mathbf{0}$$

only when $c_1 = c_2 = \cdots = c_s = 0$. Otherwise, S is **linearly dependent**.

Theorem 3.4.9 (Unifying Theorem). If A is an $n \times n$ matrix, then the following statements are equivalent.

- (a) The reduced row echelon form of A is I_n .
- (b) A is expressible as a product of elementary matrices.
- (c) A is invertible.
- (d) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every vector \mathbf{b} in \mathbb{R}^n .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every vector \mathbf{b} in \mathbb{R}^n .
- (g) The column vectors of A are linearly independent.
- (h) The row vectors of A are linearly independent.

Section 3.5: The Geometry of Linear Systems

Theorem 3.5.2. A general solution of a consistent linear system $A\mathbf{x} = \mathbf{b}$ can be obtained by adding a particular solution of $A\mathbf{x} = \mathbf{b}$ to a general solution of $A\mathbf{x} = \mathbf{0}$.

If A is a matrix with columns $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$, then the **column space** of A is

$$\operatorname{col}(A) := \operatorname{span}\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}.$$

Theorem 3.5.5. The system $A\mathbf{x} = \mathbf{b}$ is consistent if and only if $\mathbf{b} \in col(A)$.

SECTION 3.6: MATRICES WITH SPECIAL FORMS

Theorem 3.6.1. (a) (upper Δ)^T = lower Δ and (lower Δ)^T = upper Δ .

- (b) (upper Δ)(upper Δ) = upper Δ and (lower Δ)(lower Δ) = lower Δ .
- (c) A triangular matrix is invertible if and only if all diagonal entries are non-zero.
- (d) (upper Δ)⁻¹ = upper Δ and (lower Δ)⁻¹ = lower Δ .

A matrix A is symmetric if $A^T = A$ and skew-symmetric if $A^T = -A$.

Theorem 3.6.2 and 3.6.4. If A and B are symmetric matrices of the same size, then A^T , A + B and kA are symmetric. If A is invertible, then A^{-1} is symmetric too.

But AB is not symmetric in general.