A and B denote $n \times n$ matrices.

SECTION 4.1: DETERMINANTS; COFACTOR EXPANSION

Definition 4.1.1. The **determinant** of A is defined to be the sum of all signed elementary products from A:

$$\det A = \sum \pm a_{1j_1} a_{2j_2} \cdots a_{nj_n},$$

where the sum is over all permutations of the column indices. The sign of an elementary product is +1 if an even number of interchanges is needed to put the indices into their natural order, and -1 otherwise.

Theorem 4.1.2. If A has a row or a column of zeroes, then $\det A = 0$.

Theorem 4.1.3. If A is a triangular matrix, then det A is the product of the entries on the main diagonal.

Definition 4.1.4. The (i, j)-th minor M_{ij} of A is the determinant of the submatrix of A obtained by deleting the *i*th row and the *j*th column. The (i, j)-th **cofactor** of A is $C_{ij} = (-1)^{i+j} M_{ij}$.

Theorem 4.1.5. *Let* $1 \le i \le n$, $1 \le j \le n$.

Cofactor expansion along the *j*th column: det $A = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$ Cofactor expansion along the *i*th row: det $A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$

Section 4.2: Properties of Determinants

Theorem 4.2.1. det $A = \det A^T$.

- **Theorem 4.2.2.** (a) If B is the matrix obtained from A by multiplying a single row (column) by the scalar k, then det $B = k \det A$.
- (b) If B is the matrix obtained from A by interchanging two rows (columns), then $\det B = -\det A$.
- (c) If B is the matrix obtained from A by adding a multiple of one row (column) to another row (column), then $\det B = \det A$.

Theorem 4.2.3.(a,b) If A has two identical or proportional rows (columns), then det A = 0. (c) det $(kA) = k^n \det A$.

Theorem 4.2.4. A is invertible if and only if det $A \neq 0$.

Theorem 4.2.5. $det(AB) = det A \cdot det B$.

Theorem 4.2.6. If A is invertible, then $det(A^{-1}) = \frac{1}{det A}$.

Theorem 4.2.7 (Unifying Theorem). The following statements are equivalent.

(a) The reduced row echelon form of A is I_n .

(b) A is expressible as a product of elementary matrices.

(c) A is invertible.

- (d) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every vector \mathbf{b} in \mathbb{R}^n .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every vector \mathbf{b} in \mathbb{R}^n .
- (q) The column vectors of A are linearly independent.
- (h) The row vectors of A are linearly independent.

(i) det $A \neq 0$.

Section 4.3: Cramer's Rule; Formula for A^{-1} ; Applications of Determinants

- **Theorem 4.3.5.** (a) If A is a 2×2 matrix, then $|\det A|$ represents the area of the parallelogram determined by the two column vectors (positioned so that their initial points coincide).
- (b) If A is a 3×3 matrix, then $|\det A|$ represents the volume of the parallelepiped determined by the three column vectors (positioned so that their initial points coincide).

Definition 4.3.7. The cross product of $\mathbf{u} = (u_1, u_2, u_3)$ with $\mathbf{v} = (v_1, v_2, v_3)$ is

$$\mathbf{u} \times \mathbf{v} = (u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_2) = \left(\begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \right).$$

Theorem 4.3.8. If \mathbf{u} , \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^3 and k is a scalar, then:

- (a) $\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}$.
- (b) $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}.$
- (c) $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = \mathbf{u} \times \mathbf{w} + \mathbf{v} \times \mathbf{w}$.
- (d) $k(\mathbf{u} \times \mathbf{v}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v}).$
- (e) $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$.
- (f) $\mathbf{u} \times \mathbf{u} = \mathbf{0}$.

Theorem 4.3.9. If **u** and **v** are vectors in \mathbb{R}^3 , then $\mathbf{u} \times \mathbf{v}$ is orthogonal to both **u** and **v**:

- (a) $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0.$
- (b) $\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0.$

Theorem 4.3.10. Let **u** and **v** be vectors in \mathbb{R}^3 , and let θ be the angle between them.

- (a) $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$.
- (b) The area of the parallelogram that has \mathbf{u} and \mathbf{v} as adjacent sides is $A = \|\mathbf{u} \times \mathbf{v}\|$.

SECTION 4.4: A FIRST LOOK AT EIGENVALUES AND EIGENVECTORS

Definition 4.4.3. A scalar λ is called an **eigenvalue** of A if there is a non-zero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$. If λ is an eigenvalue of A, then every non-zero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$ is called an **eigenvector** of A corresponding to λ .

Theorem 4.4.4. Let λ be a scalar. The following statements are equivalent.

- (a) λ is an eigenvalue of A.
- (b) λ is a solution of the equation $\det(\lambda I A) = 0$.
- (c) The linear system $(\lambda I A)\mathbf{x} = \mathbf{0}$ has non-trivial solutions.

Theorem 4.4.5. If A is a triangular matrix (upper or lower triangular or diagonal), then the eigenvalues of A are the entries of the main diagonal of A.

Theorem 4.4.7 (Unifying Theorem). (j) $\lambda = 0$ is not an eigenvalue of A.

Theorem 4.4.8. The characteristic polynomial of A can be expressed as

 $\det(\lambda I - A) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_k)^{m_k},$

where $\lambda_1, \lambda_2, \ldots, \lambda_k$ are the distinct eigenvalues of A, and the corresponding algebraic multiplicities satisfy $m_1 + m_2 + \cdots + m_k = n$.

Theorem 4.4.12. If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A (repeated according to multiplicity), then:

- (a) det $A = \lambda_1 \lambda_2 \cdots \lambda_n$.
- (b) $\operatorname{tr} A = \lambda_1 + \lambda_2 + \dots + \lambda_n$.