Definition 6.1.1. A function $f: D \to C$ is a rule that associates to each x in the **domain** D a unique value y = f(x) in the **codomain** C. One says that f maps x into f(x) and that f(x) is the **image** of x under f. The **range** ran(f) of f is the set of all values f(x).

Definition 6.1.2. A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a **linear transformation** from \mathbb{R}^n to \mathbb{R}^m if for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and all scalars c one has:

- (a) $T(c\mathbf{u}) = cT(\mathbf{u})$ (homogeneity)
- (b) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ (additivity)

If n = m, T is also called a **linear operator**.

Theorem 6.1.3. If $T : \mathbb{R}^n \to \mathbb{R}^m$ is linear and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, then

- (a) T(0) = 0
- (b) $T(-\mathbf{u}) = -T(\mathbf{u})$
- (c) $T(\mathbf{u} \mathbf{v}) = T(\mathbf{u}) T(\mathbf{v})$

Theorem 6.1.4. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be linear. If $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ are the standard unit vectors in \mathbb{R}^n and $\mathbf{x} \in \mathbb{R}^n$, then $T(\mathbf{x}) = A\mathbf{x}$ where $A = [T(\mathbf{e}_1) T(\mathbf{e}_2) \cdots T(\mathbf{e}_n)]$ is the standard matrix for A.

SECTION 6.2: GEOMETRY OF LINEAR OPERATORS

Theorem 6.2.1. If $T : \mathbb{R}^n \to \mathbb{R}^n$ is linear, then the following statements are equivalent:

- (a) $||T(\mathbf{x})|| = ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{R}^n$
- (b) $T(\mathbf{x}) \cdot T(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

Definition 6.2.2. A square matrix A is **orthogonal** if it is invertible and $A^{-1} = A^T$.

Theorem 6.2.3.(a)-(c) Transposes, inverses and products of orthogonal matrices are orthogonal.

(d) If A is orthogonal, then det $A = \pm 1$.

Theorem 6.2.4 and Theorem 6.2.5. Let A be an $n \times n$ matrix. The following statements are equivalent:

- (a) $A^T A = I$, i.e., A is orthogonal
- (b) $||A\mathbf{x}|| = ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{R}^n$.
- (c) $A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- (d) The column vectors of A are orthonormal.
- (e) The row vectors of A are orthonormal.

Theorem 6.2.6. A linear operator $T : \mathbb{R}^n \to \mathbb{R}^n$ is orthogonal if and only if its standard matrix is orthogonal.

Theorem 6.2.7. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be an orthogonal linear operator. Then its standard matrix is expressible in the form

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad or \quad H_{\theta/2} = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

That is, T is either a rotation about the origin through the angle θ or a reflection about a line through the origin which makes an angle $\theta/2$ with the positive x-axis.

Definition 6.3.1. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be linear. The set of vectors mapped to **0** under *T* is called the **kernel** ker *T* of *T*.

Theorem 6.3.2. The kernel of a linear transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is a subspace of \mathbb{R}^n .

Theorem 6.3.3 and Definition 6.3.4. The solution space of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$ is called the **null space** null(A) of the matrix A. It is the kernel of the linear transformation corresponding to A.

Theorem 6.3.7. The range $\operatorname{ran}(T)$ of a linear transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is a subspace of \mathbb{R}^m .

Theorem 6.3.8. Let A be a matrix. The range of the linear transformation corresponding to A is the column space of A.

Definition 6.3.9. A linear transformation is **onto** if its range equals the entire codomain.

Definition 6.3.10. A linear transformation is **one-to-one** (1-1) if it maps distinct vectors of the domain into distinct vectors of the codomain.

Theorem 6.3.11. Let T be a linear transformation. Then T is one-to-one if and only if $\ker T = \{0\}$.

Theorem 6.3.12. Let A be a matrix. The corresponding linear transformation is one-toone if and only if $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Theorem 6.3.13. Let A be an $m \times n$ matrix. The corresponding linear transformation is onto if and only if $A\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^m$.

Theorem 6.3.14 and 6.3.15 (Unifying Theorem).

- (a) The reduced row echelon form of A is I_n .
- (b) A is expressible as a product of elementary matrices.
- (c) A is invertible.
- (d) Ax = 0 has only the trivial solution.
- (e) Ax = b is consistent for every vector b in \mathbb{R}^n .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every vector \mathbf{b} in \mathbb{R}^n .
- (g) The column vectors of A are linearly independent.
- (h) The row vectors of A are linearly independent.
- (i) det $A \neq 0$.
- (j) $\lambda = 0$ is not an eigenvalue of A.
- (k) T_A is one-to-one.
- (l) T_A is onto.

SECTION 6.4: COMPOSITION AND INVERTIBILITY OF LINEAR TRANSFORMATIONS

Theorem 6.4.1. If $T_1: \mathbb{R}^n \to \mathbb{R}^k$ and $T_2: \mathbb{R}^k \to \mathbb{R}^m$ are linear transformations, then $T_2 \circ T_1: \mathbb{R}^n \to \mathbb{R}^m$ is also a linear transformation.

Theorem 6.4.2. Let A and B be matrices such that BA is defined. Then $T_B \circ T_A = T_{BA}$.

Theorem 6.4.5. If T is a one-to-one linear transformation, then so is T^{-1} .

Theorem 6.4.6. Let $T = T_A$ be a one-to-one linear operator with standard matrix A. Then A is invertible and $T_A^{-1} = T_{A^{-1}}$.