Section 7.1: Basis and Dimension

Definition 7.1.1. A set of vectors in a subspace V of \mathbb{R}^n is a **basis** for V if it is linearly independent and spans V.

Theorem 7.1.2. Let $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k}$ be a set of nonzero vectors in \mathbb{R}^n . The S is linearly dependent if and only if some \mathbf{v}_i is a linear combination of its predecessors.

Theorem 7.1.3 (Existence of a Basis). Every subspace of \mathbb{R}^n has a basis (and this basis has at most n vectors).

A basis for the subspace $\{0\}$ is the empty set (despite what the book says).

Theorem 7.1.4. All bases for a subspace V of \mathbb{R}^n have the same number of vectors.

Definition 7.1.5. The number of vectors in a basis is called the **dimension** of V.

The general solution to a homogeneous system that results from Gauss–Jordan elimination produces a basis for the solution space. This basis is called the **canonical basis**.

Section 7.2: Properties of Bases

Theorem 7.2.1. If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a basis for a subspace V, then every vector in V can be expressed in exactly one way as a linear combination of the \mathbf{v}_i .

Theorem 7.2.2. Let $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k}$ be a set of vectors in a subspace V.

- (a) If $V = \text{span}\{S\}$, but S is not linearly independent, then a basis for V can be obtained by removing vectors from S.
- (b) If S is linearly independent, but $V \neq \text{span}\{S\}$, then a basis for V can be obtained by adding vectors to S.

Theorem 7.2.3. $\dim(V) = the$ maximum number of linearly independent vectors in V

Theorem 7.2.4. Let V, W be subspaces of \mathbb{R}^n such that V is contained in W.

- (a) $0 \le \dim(V) \le \dim(W) \le n$
- (b) V = W if and only if $\dim(V) = \dim(W)$.

Theorem 7.2.6. Let S be a set of l vectors in a subspace V with $\dim(V) = k$.

- (a) If l = k and S is linearly independent, then S is a basis for V.
- (b) If l = k and V = span(S), then S is a basis for V.
- (c) If l < k, then $V \neq \operatorname{span}(S)$.
- (d) If l > k, then S is not linearly independent.

Theorem 7.2.7 (Unifying theorem). Let A be an $n \times n$ matrix. TFAE:

(c) A is invertible.

- (k) the columns of A are linearly independent.
- (l) the rows of A are linearly independent.
- (m) the columns of A span \mathbb{R}^n .
- (n) the rows of A span \mathbb{R}^n .
- (o) the columns of A form a basis for \mathbb{R}^n .
- (p) the rows of A form a basis for \mathbb{R}^n .