SECTION 7.1: BASIS AND DIMENSION

Definition 7.1.1. A set of vectors in a subspace V of \mathbb{R}^n is a **basis** for V if it is linearly independent and spans V.

Theorem 7.1.2. Let $S = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k}$ be a set of nonzero vectors in \mathbb{R}^n . The S is linearly dependent if and only if some v_j is a linear combination of its predecessors.

Theorem 7.1.3 (Existence of a Basis). Every subspace of \mathbb{R}^n has a basis (and this basis has at most n vectors).

A basis for the subspace $\{0\}$ is the empty set (despite what the book says).

Theorem 7.1.4. All bases for a subspace V of \mathbb{R}^n have the same number of vectors.

Definition 7.1.5. The number of vectors in a basis is called the **dimension** of V .

The general solution to a homogeneous system that results from Gauss–Jordan elimination produces a basis for the solution space. This basis is called the canonical basis.

SECTION 7.2: PROPERTIES OF BASES

Theorem 7.2.1. If $\{v_1, v_2, \ldots, v_k\}$ is a basis for a subspace V, then every vector in V can be expressed in exactly one way as a linear combination of the v_i .

Theorem 7.2.2. Let $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k}$ be a set of vectors in a subspace V.

- (a) If $V = \text{span}\{S\}$, but S is not linearly independent, then a basis for V can be obtained by removing vectors from S.
- (b) If S is linearly independent, but $V \neq \text{span}\{S\}$, then a basis for V can be obtained by adding vectors to S.

Theorem 7.2.3. dim(V) = the maximum number of linearly independent vectors in V

Theorem 7.2.4. Let V, W be subspaces of \mathbb{R}^n such that V is contained in W.

 (a) 0 \leq dim (V) \leq dim (W) $\leq n$

(b) $V = W$ if and only if $\dim(V) = \dim(W)$.

Theorem 7.2.6. Let S be a set of l vectors in a subspace V with $\dim(V) = k$.

- (a) If $l = k$ and S is linearly independent, then S is a basis for V.
- (b) If $l = k$ and $V = \text{span}(S)$, then S is a basis for V.
- (c) If $l < k$, then $V \neq \text{span}(S)$.
- (d) If $l > k$, then S is not linearly independent.

Theorem 7.2.7 (Unifying theorem). Let A be an $n \times n$ matrix. TFAE:

 (c) A is invertible.

- (k) the columns of A are linearly independent.
- (l) the rows of A are linearly independent.
- (m) the columns of A span \mathbb{R}^n .
- (*n*) the rows of A span \mathbb{R}^n .
- (o) the columns of A form a basis for \mathbb{R}^n .
- (p) the rows of A form a basis for \mathbb{R}^n .