Theorem 7.7.1 and Definition 7.7.2. Let $\mathbf{a} \in \mathbb{R}^n$ be non-zero. Then every $\mathbf{x} \in \mathbb{R}^n$ can be expressed in exactly one way as $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, where \mathbf{x}_1 is parallel to a and \mathbf{x}_2 is orthogonal to a. We have

$$
\mathbf{x}_1 = \text{proj}_{\mathbf{a}} \mathbf{x} = \frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a} \quad \text{and} \quad \mathbf{x}_2 = \mathbf{x} - \mathbf{x}_1.
$$

proj_a x is called the **orthogonal projection of** x **onto** span $\{a\}$.

Theorem 7.7.3. If we define an operator $T: \mathbb{R}^n \to \mathbb{R}^n$ by $T(\mathbf{x}) = \text{proj}_\mathbf{a} \mathbf{x}$, then

$$
[T] = P = \frac{1}{\mathbf{a}^T \mathbf{a}} \mathbf{a} \mathbf{a}^T.
$$

This matrix is symmetric $(P = P^T)$ and **idempotent** $(P^2 = P)$ and has rank 1. If a is replaced by ka, P does not change. If $\mathbf{a} = \mathbf{u}$ is a unit vector, then $P = \mathbf{u} \mathbf{u}^T$.

Theorem 7.7.4. Let W be a subspace of \mathbb{R}^n . Then every $\mathbf{x} \in \mathbb{R}^n$ can be expressed in exactly one way as $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, where \mathbf{x}_1 is in W and \mathbf{x}_2 is in W^{\perp} .

 x_1 is called the **orthogonal projection of x onto W** and is denoted proj_W x.

Theorem 7.7.5 and part of 7.7.6. If M is a matrix whose columns form a basis for W . then M^TM is invertible and

$$
\operatorname{proj}_{W} \mathbf{x} = M (M^T M)^{-1} M^T \mathbf{x}.
$$

If we define an operator $T: \mathbb{R}^n \to \mathbb{R}^n$ by $T(\mathbf{x}) = \text{proj}_W \mathbf{x}$, then

$$
[T] = P = M (M^T M)^{-1} M^T.
$$

This matrix is symmetric and idempotent and has rank equal to the dimension of W.

Theorem 7.7.6. If P is an $n \times n$ symmetric, idempotent matrix, then T_P is the orthogonal projection onto the subspace $col(P)$.

Section 7.8: Best approximations and least squares

Theorem 7.8.1 (Best approximation). If W is a subspace of \mathbb{R}^n and b is a point in \mathbb{R}^n , then $\hat{\mathbf{w}} = \text{proj}_W \mathbf{b}$ is the unique **best** approximation to **b** from W. That is, for any other w in W, $\|\mathbf{b} - \hat{\mathbf{w}}\| < \|\mathbf{b} - \mathbf{w}\|$.

Definition 7.8.2. Let A be an $m \times n$ matrix and **b** be in \mathbb{R}^m . A vector $\mathbf{x} \in \mathbb{R}^n$ is a least squares solution to $A\mathbf{x} = \mathbf{b}$ if it minimizes the error $\|\mathbf{b} - A\mathbf{x}\|$. The vector $\mathbf{b} - A\mathbf{x}$ is called the least squares error vector and the scalar $\|\mathbf{b}-A\mathbf{x}\|$ is called the least squares error.

The normal system associated to $A\mathbf{x} = \mathbf{b}$ is the system

$$
A^T A \mathbf{x} = A^T \mathbf{b}.
$$

Theorem 7.8.3. (a) The least squares solutions of $A\mathbf{x} = \mathbf{b}$ are the exact solutions of the normal system.

(b) If A has full column rank (that is, the columns are linearly independent), then A^TA is invertible and the unique solution of the normal system is

$$
\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}.
$$

Theorem 7.8.4. $\hat{\mathbf{x}}$ is a least squares solution to $A\mathbf{x} = \mathbf{b}$ if and only if the error vector $\mathbf{b} - A\mathbf{x}$ is orthogonal to $\text{col}(A)$.

Fitting a curve to data. Given data points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ that are supposed to line on a line $y = a + bx$, we have

$$
M\mathbf{v} = \mathbf{y}
$$
, where $M = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$.

If the data do not exactly lie on a straight line, this system will have no solution, so we solve for a and b using the normal system

$$
M^T M \mathbf{v} = M^T \mathbf{y}.
$$

The line $y = a + bx$ is called the **least squares line of best fit.** Note that

$$
M^T M = \left[\begin{array}{cc} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{array} \right] \text{ and } M^T \mathbf{y} = \left[\begin{array}{c} \sum y_i \\ \sum x_i y_i \end{array} \right].
$$

Moreover, $M^{T}M$ is invertible unless all of the x_i 's are equal.

Section 7.9: Orthonormal bases and the Gram–Schmidt process

Theorem 7.9.1. An orthogonal set of non-zero vectors is linearly independent.

Theorem 7.9.2 and 7.9.4. If $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ is an orthogonal basis for a subspace W, then

$$
\operatorname{proj}_{W} \mathbf{x} = \frac{\mathbf{x} \cdot \mathbf{v}_1}{\|\mathbf{v}_1^2\|} \mathbf{v}_1 + \dots + \frac{\mathbf{x} \cdot \mathbf{v}_k}{\|\mathbf{v}_k^2\|} \mathbf{v}_k.
$$

If the vectors are orthonormal, then the denominators can be omitted. If x is in W, then $proj_W$ $\mathbf{x} = \mathbf{x}$, so this gives a formula expressing \mathbf{x} in terms of the given basis.

Finding an orthonormal basis: Gram–Schmidt.

Theorem 7.9.5. Every subspace of \mathbb{R}^n has an orthonormal basis.

Method: Start with any basis $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_k$ for W. We will first find an orthogonal basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$:

$$
\mathbf{v}_1 = \mathbf{w}_1
$$

\n
$$
\mathbf{v}_2 = \mathbf{w}_2 - \frac{\mathbf{w}_2 \cdot \mathbf{v}_1}{\|\mathbf{v}_1\|^2} \mathbf{v}_1
$$

\n
$$
\mathbf{v}_3 = \mathbf{w}_3 - \frac{\mathbf{w}_3 \cdot \mathbf{v}_1}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\mathbf{w}_3 \cdot \mathbf{v}_2}{\|\mathbf{v}_2\|^2} \mathbf{v}_2
$$

\n
$$
\vdots
$$

Then set $\mathbf{q}_i = \frac{\mathbf{v}_i}{\|\mathbf{v}_i\|^2}$ $\frac{\mathbf{v}_i}{\|\mathbf{v}_i\|}$ if an orthonormal basis is desired.

Theorem 7.9.7. Let W be a subspace of \mathbb{R}^n . Every orthogonal (or orthonormal) set of vectors in W can be enlarged to an orthogonal (or orthonormal) basis for W.