
Section 7.7: The projection theorem and its implications

Theorem 7.7.1 and Definition 7.7.2. Let a ∈ Rn be non-zero. Then every x ∈ Rn

can be expressed in exactly one way as x = x1 + x2, where x1 is parallel to a and x2 is
orthogonal to a. We have

x1 = proja x =
x · a
‖a‖2

a and x2 = x− x1.

proja x is called the orthogonal projection of x onto span{a}.

Theorem 7.7.3. If we define an operator T : Rn → Rn by T (x) = proja x, then

[T ] = P =
1

aTa
aaT .

This matrix is symmetric (P = P T ) and idempotent (P 2 = P ) and has rank 1. If a is
replaced by ka, P does not change. If a = u is a unit vector, then P = uuT .

Theorem 7.7.4. Let W be a subspace of Rn. Then every x ∈ Rn can be expressed in
exactly one way as x = x1 + x2, where x1 is in W and x2 is in W⊥.

x1 is called the orthogonal projection of x onto W and is denoted projW x.

Theorem 7.7.5 and part of 7.7.6. If M is a matrix whose columns form a basis for W ,
then MT M is invertible and

projW x = M (MT M)−1MTx.

If we define an operator T : Rn → Rn by T (x) = projW x, then

[T ] = P = M (MT M)−1MT .

This matrix is symmetric and idempotent and has rank equal to the dimension of W .

Theorem 7.7.6. If P is an n×n symmetric, idempotent matrix, then TP is the orthogonal
projection onto the subspace col(P ).

Section 7.8: Best approximations and least squares

Theorem 7.8.1 (Best approximation). If W is a subspace of Rn and b is a point in
Rn, then ŵ = projW b is the unique best approximation to b from W . That is, for any
other w in W , ‖b− ŵ‖ < ‖b−w‖.

Definition 7.8.2. Let A be an m× n matrix and b be in Rm. A vector x ∈ Rn is a least
squares solution to Ax = b if it minimizes the error ‖b − Ax‖. The vector b − Ax is
called the least squares error vector and the scalar ‖b−Ax‖ is called the least squares
error.

The normal system associated to Ax = b is the system

AT Ax = ATb.

Theorem 7.8.3. (a) The least squares solutions of Ax = b are the exact solutions of
the normal system.

(b) If A has full column rank (that is, the columns are linearly independent), then AT A
is invertible and the unique solution of the normal system is

x̂ = (AT A)−1 ATb.

Theorem 7.8.4. x̂ is a least squares solution to Ax = b if and only if the error vector
b−Ax is orthogonal to col(A).



Fitting a curve to data. Given data points (x1, y1), (x2, y2), . . . , (xn, yn) that are sup-
posed to line on a line y = a + bx, we have

Mv = y, where M =

1 x1
...

...
1 xn

, v =
[

a
b

]
and y =

y1
...

yn

.

If the data do not exactly lie on a straight line, this system will have no solution, so we
solve for a and b using the normal system

MT Mv = MTy.

The line y = a + bx is called the least squares line of best fit. Note that

MT M =
[

n
∑

xi∑
xi

∑
x2

i

]
and MTy =

[ ∑
yi∑

xiyi

]
.

Moreover, MT M is invertible unless all of the xi’s are equal.

Section 7.9: Orthonormal bases and the Gram–Schmidt process

Theorem 7.9.1. An orthogonal set of non-zero vectors is linearly independent.

Theorem 7.9.2 and 7.9.4. If v1,v2, . . . ,vk is an orthogonal basis for a subspace W , then

projW x =
x · v1

‖v2
1‖

v1 + · · ·+ x · vk

‖v2
k‖

vk.

If the vectors are orthonormal, then the denominators can be omitted. If x is in W , then
projW x = x, so this gives a formula expressing x in terms of the given basis.

Finding an orthonormal basis: Gram–Schmidt.

Theorem 7.9.5. Every subspace of Rn has an orthonormal basis.

Method: Start with any basis w1,w2, . . . ,wk for W . We will first find an orthogonal basis
v1,v2, . . . ,vk:

v1 = w1

v2 = w2 −
w2 · v1

‖v1‖2
v1

v3 = w3 −
w3 · v1

‖v1‖2
v1 −

w3 · v2

‖v2‖2
v2

...

Then set qi =
vi

‖vi‖
if an orthonormal basis is desired.

Theorem 7.9.7. Let W be a subspace of Rn. Every orthogonal (or orthonormal) set of
vectors in W can be enlarged to an orthogonal (or orthonormal) basis for W .


