Theorem 7.7.1 and Definition 7.7.2. Let $\mathbf{a} \in \mathbb{R}^n$ be non-zero. Then every $\mathbf{x} \in \mathbb{R}^n$ can be expressed in exactly one way as $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, where \mathbf{x}_1 is parallel to \mathbf{a} and \mathbf{x}_2 is orthogonal to \mathbf{a} . We have

$$\mathbf{x}_1 = \operatorname{proj}_{\mathbf{a}} \mathbf{x} = \frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a}$$
 and $\mathbf{x}_2 = \mathbf{x} - \mathbf{x}_1$.

 $\operatorname{proj}_{\mathbf{a}} \mathbf{x}$ is called the orthogonal projection of \mathbf{x} onto $\operatorname{span}\{\mathbf{a}\}$.

Theorem 7.7.3. If we define an operator $T \colon \mathbb{R}^n \to \mathbb{R}^n$ by $T(\mathbf{x}) = \operatorname{proj}_{\mathbf{a}} \mathbf{x}$, then

$$[T] = P = \frac{1}{\mathbf{a}^T \mathbf{a}} \mathbf{a} \mathbf{a}^T.$$

This matrix is symmetric $(P = P^T)$ and **idempotent** $(P^2 = P)$ and has rank 1. If **a** is replaced by k**a**, P does not change. If **a** = **u** is a unit vector, then $P = \mathbf{u}\mathbf{u}^T$.

Theorem 7.7.4. Let W be a subspace of \mathbb{R}^n . Then every $\mathbf{x} \in \mathbb{R}^n$ can be expressed in exactly one way as $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, where \mathbf{x}_1 is in W and \mathbf{x}_2 is in W^{\perp} .

 \mathbf{x}_1 is called the **orthogonal projection of x onto** W and is denoted $\operatorname{proj}_W \mathbf{x}$.

Theorem 7.7.5 and part of 7.7.6. If M is a matrix whose columns form a basis for W, then $M^T M$ is invertible and

$$\operatorname{proj}_W \mathbf{x} = M \left(M^T M \right)^{-1} M^T \mathbf{x}$$

If we define an operator $T \colon \mathbb{R}^n \to \mathbb{R}^n$ by $T(\mathbf{x}) = \operatorname{proj}_W \mathbf{x}$, then

$$[T] = P = M (M^T M)^{-1} M^T.$$

This matrix is symmetric and idempotent and has rank equal to the dimension of W.

Theorem 7.7.6. If P is an $n \times n$ symmetric, idempotent matrix, then T_P is the orthogonal projection onto the subspace col(P).

Section 7.8: Best approximations and least squares

Theorem 7.8.1 (Best approximation). If W is a subspace of \mathbb{R}^n and **b** is a point in \mathbb{R}^n , then $\hat{\mathbf{w}} = \operatorname{proj}_W \mathbf{b}$ is the unique **best approximation** to **b** from W. That is, for any other **w** in W, $\|\mathbf{b} - \hat{\mathbf{w}}\| < \|\mathbf{b} - \mathbf{w}\|$.

Definition 7.8.2. Let A be an $m \times n$ matrix and **b** be in \mathbb{R}^m . A vector $\mathbf{x} \in \mathbb{R}^n$ is a **least** squares solution to $A\mathbf{x} = \mathbf{b}$ if it minimizes the error $\|\mathbf{b} - A\mathbf{x}\|$. The vector $\mathbf{b} - A\mathbf{x}$ is called the **least squares error vector** and the scalar $\|\mathbf{b} - A\mathbf{x}\|$ is called the **least squares error**.

The normal system associated to $A\mathbf{x} = \mathbf{b}$ is the system

$$A^T A \mathbf{x} = A^T \mathbf{b}.$$

Theorem 7.8.3. (a) The least squares solutions of $A\mathbf{x} = \mathbf{b}$ are the exact solutions of the normal system.

(b) If A has full column rank (that is, the columns are linearly independent), then $A^T A$ is invertible and the unique solution of the normal system is

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}.$$

Theorem 7.8.4. $\hat{\mathbf{x}}$ is a least squares solution to $A\mathbf{x} = \mathbf{b}$ if and only if the error vector $\mathbf{b} - A\mathbf{x}$ is orthogonal to $\operatorname{col}(A)$.

Fitting a curve to data. Given data points (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) that are supposed to line on a line y = a + bx, we have

$$M\mathbf{v} = \mathbf{y}, \text{ where } M = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix} \text{ and } \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}.$$

If the data do not exactly lie on a straight line, this system will have no solution, so we solve for a and b using the normal system

$$M^T M \mathbf{v} = M^T \mathbf{y}.$$

The line y = a + bx is called the **least squares line of best fit**. Note that

$$M^T M = \begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} \text{ and } M^T \mathbf{y} = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \end{bmatrix}.$$

Moreover, $M^T M$ is invertible unless all of the x_i 's are equal.

Section 7.9: Orthonormal bases and the Gram-Schmidt process

Theorem 7.9.1. An orthogonal set of non-zero vectors is linearly independent.

Theorem 7.9.2 and 7.9.4. If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is an orthogonal basis for a subspace W, then project $\mathbf{x} = \frac{\mathbf{x} \cdot \mathbf{v}_1}{\mathbf{v}_1} + \dots + \frac{\mathbf{x} \cdot \mathbf{v}_k}{\mathbf{v}_k} \mathbf{v}_k$

$$\operatorname{proj}_W \mathbf{x} = \frac{\mathbf{x} \cdot \mathbf{v}_1}{\|\mathbf{v}_1^2\|} \mathbf{v}_1 + \dots + \frac{\mathbf{x} \cdot \mathbf{v}_k}{\|\mathbf{v}_k^2\|} \mathbf{v}_k.$$

If the vectors are orthonormal, then the denominators can be omitted. If \mathbf{x} is in W, then $\operatorname{proj}_W \mathbf{x} = \mathbf{x}$, so this gives a formula expressing \mathbf{x} in terms of the given basis.

Finding an orthonormal basis: Gram-Schmidt.

Theorem 7.9.5. Every subspace of \mathbb{R}^n has an orthonormal basis.

Method: Start with any basis $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_k$ for W. We will first find an orthogonal basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$:

$$\mathbf{v}_1 = \mathbf{w}_1$$

$$\mathbf{v}_2 = \mathbf{w}_2 - \frac{\mathbf{w}_2 \cdot \mathbf{v}_1}{\|\mathbf{v}_1\|^2} \mathbf{v}_1$$

$$\mathbf{v}_3 = \mathbf{w}_3 - \frac{\mathbf{w}_3 \cdot \mathbf{v}_1}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\mathbf{w}_3 \cdot \mathbf{v}_2}{\|\mathbf{v}_2\|^2} \mathbf{v}_2$$

:

Then set $\mathbf{q}_i = \frac{\mathbf{v}_i}{\|\mathbf{v}_i\|}$ if an orthonormal basis is desired.

Theorem 7.9.7. Let W be a subspace of \mathbb{R}^n . Every orthogonal (or orthonormal) set of vectors in W can be enlarged to an orthogonal (or orthonormal) basis for W.