Definition 7.11.1. Let $B = {\mathbf{v}_1, \ldots, \mathbf{v}_k}$ be an ordered basis for a subspace W of \mathbb{R}^n and let \mathbf{w} be in W. If $\mathbf{w} = a_1\mathbf{v}_1 + \cdots + a_k\mathbf{v}_k$, then a_1, \ldots, a_k are called the **coordinates** of \mathbf{w} with respect to B, $(\mathbf{w})_B = (a_1, \ldots, a_k)$ is called the **coordinate vector** for \mathbf{w} with respect to B, and

$$[\mathbf{w}]_B = \begin{bmatrix} a_1 \\ \vdots \\ a_k \end{bmatrix}$$

is called the **coordinate matrix** for \mathbf{w} with respect to B.

Theorem 7.11.2. Let B be an orthonormal basis for a k-dimensional subspace W of \mathbb{R}^n , and let **u** and **v** be vectors in W with coordinate vectors $(\mathbf{u})_B = (u_1, \ldots, u_k)$ and $(\mathbf{v})_B = (v_1, \ldots, v_k)$. Then

- (a) $\|\mathbf{u}\| = \sqrt{u_1^2 + \dots + u_k^2},$
- (b) $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + \dots + u_k v_k = (\mathbf{u})_B \cdot (\mathbf{v})_B.$

Theorem 7.11.3 (Change of basis). Let $B = {\mathbf{v}_1, \ldots, \mathbf{v}_k}$ and $B' = {\mathbf{v}'_1, \ldots, \mathbf{v}'_k}$ be bases for \mathbb{R}^n . The coordinate matrices of $\mathbf{w} \in \mathbb{R}^n$ with respect to the two bases are related by the equation $[\mathbf{w}]_{\mathbf{v}_k} = P_{\mathbf{v}_k} \cdot \mathbf{v}_k[\mathbf{w}]_{\mathbf{v}_k}$

where

$$[\mathbf{w}]_{B'} = P_{B \to B'}[\mathbf{w}]_B,$$

$$P_{B\to B'} = \left[\left[\mathbf{v}_1 \right]_{B'} \cdots \left[\mathbf{v}_n \right]_{B'} \right]$$

is the transition matrix (or change of coordinates matrix) from B to B'.

Theorem 7.11.4. Let B and B' be bases for \mathbb{R}^n . The transition matrices $P_{B\to B'}$ and $P_{B'\to B}$ are invertible and inverses of one another, that is,

$$P_{B'\to B} = (P_{B\to B'})^{-1}.$$

Theorem 7.11.5. Let B be a basis for \mathbb{R}^n . The coordinate map $\mathbf{x} \mapsto (\mathbf{x})_B$ (or $\mathbf{x} \mapsto [\mathbf{x}]_B$) is a 1-1 and onto linear operator on \mathbb{R}^n . Moreover, if B is an orthonormal basis, then the coordinate map is an orthogonal operator.

Theorem 7.11.7. Let B and B' be orthonormal bases for \mathbb{R}^n . Then the transition matrices $P_{B\to B'}$ and $P_{B'\to B}$ are orthogonal.

Theorem 7.11.8. Let $P = [\mathbf{p}_1 \dots \mathbf{p}_n]$ be an invertible $n \times n$ matrix. Then P is the transition matrix from the basis $B = {\mathbf{p}_1, \dots, \mathbf{p}_n}$ to the standard basis $S = {\mathbf{e}_1, \dots, \mathbf{e}_n}$ for \mathbb{R}^n .