Definition 7.11.1. Let $B = {\mathbf{v}_1, \dots, \mathbf{v}_k}$ be an ordered basis for a subspace *W* of \mathbb{R}^n and let **w** be in *W*. If $\mathbf{w} = a_1 \mathbf{v}_1 + \cdots + a_k \mathbf{v}_k$, then a_1, \ldots, a_k are called the **coordinates of w with respect to B**, $(\mathbf{w})_B = (a_1, \ldots, a_k)$ is called the **coordinate vector** for **w** with respect to *B*, and

$$
[\mathbf{w}]_B = \begin{bmatrix} a_1 \\ \vdots \\ a_k \end{bmatrix}
$$

is called the **coordinate matrix** for **w** with respect to *B*.

Theorem 7.11.2. Let B be an orthonormal basis for a *k*-dimensional subspace W of \mathbb{R}^n , *and let* **u** *and* **v** *be vectors in W with coordinate vectors* $(\mathbf{u})_B = (u_1, \dots, u_k)$ *and* $(\mathbf{v})_B =$ (v_1, \ldots, v_k) *. Then*

- (a) $\|\mathbf{u}\| = \sqrt{u_1^2 + \dots + u_k^2},$
- (*b*) $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + \cdots + u_k v_k = (\mathbf{u})_B \cdot (\mathbf{v})_B$.

Theorem 7.11.3 (Change of basis). Let $B = {\bf{v}_1, ..., v_k}$ and $B' = {\bf{v}'_1, ..., v'_k}$ be *bases for* \mathbb{R}^n . The coordinate matrices of $\mathbf{w} \in \mathbb{R}^n$ with respect to the two bases are related *by the equation* $[\mathbf{w}]\mathbf{w} = P_{\mathbf{w}}\mathbf{w}[\mathbf{w}]\mathbf{w}$

where

$$
[\mathbf{w}]_{B'} = \mathbf{1}_{B \to B'}[\mathbf{w}]_{B},
$$

$$
P_{B\rightarrow B'} = [[\mathbf{v}_1]_{B'} \cdots [\mathbf{v}_n]_{B'}]
$$

is the transition matrix (or change of coordinates matrix) from B to B′ .

Theorem 7.11.4. Let *B* and *B'* be bases for \mathbb{R}^n . The transition matrices $P_{B\to B'}$ and $P_{B' \to B}$ *are invertible and inverses of one another, that is,*

$$
P_{B'\to B} = (P_{B\to B'})^{-1}.
$$

Theorem 7.11.5. Let B be a basis for \mathbb{R}^n . The coordinate map $\mathbf{x} \mapsto (\mathbf{x})_B$ (or $\mathbf{x} \mapsto [\mathbf{x}]_B$) *is a 1-1 and onto linear operator on* \mathbb{R}^n . Moreover, if B *is an orthonormal basis, then the coordinate map is an orthogonal operator.*

Theorem 7.11.7. Let B and B' be orthonormal bases for \mathbb{R}^n . Then the transition matrices $P_{B\rightarrow B'}$ *and* $P_{B'\rightarrow B}$ *are orthogonal.*

Theorem 7.11.8. Let $P = [\mathbf{p}_1 \dots \mathbf{p}_n]$ be an invertible $n \times n$ matrix. Then P is the *transition matrix from the basis* $B = \{p_1, \ldots, p_n\}$ *to the standard basis* $S = \{e_1, \ldots, e_n\}$ for \mathbb{R}^n .