**Theorem 8.1.1.** Let  $T: \mathbb{R}^n \to \mathbb{R}^n$  be a linear operator and  $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$  be a basis for  $\mathbb{R}^n$ . Define the  $n \times n$  matrix

$$[T]_B = [[T(\mathbf{v}_1)]_B \cdots [T(\mathbf{v}_n)]_B].$$

Then

$$[T(\mathbf{x})]_B = [T]_B[\mathbf{x}]_B$$

for all  $\mathbf{x} \in \mathbb{R}^n$ . Moreover,  $[T]_B$  is the only matrix with this property. It is called the **matrix** for T with respect to B.

**Theorem 8.1.2 and Theorem 8.1.3.** Let  $T: \mathbb{R}^n \to \mathbb{R}^n$  be a linear operator and  $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$  and  $B' = \{\mathbf{v}'_1, \dots, \mathbf{v}'_n\}$  be bases for  $\mathbb{R}^n$ . Then

$$[T]_{B'} = P[T]_B P^{-1},$$

where  $P = P_{B \to B'}$ . If B and B' are orthonormal bases, then P is orthogonal, so that

$$[T]_{B'} = P[T]_B P^T.$$

This applies in particular to the special case where B' = S is the standard basis for  $\mathbb{R}^n$ , in which case  $[T]_{B'} = [T]$ .

**Theorem 8.1.4.** Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a linear transformation,  $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$  and  $B' = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$  be bases for  $\mathbb{R}^n$  and  $\mathbb{R}^m$ , respectively. Define the  $m \times n$  matrix

$$A = \left[ [T(\mathbf{v}_1)]_{B'} \cdots [T(\mathbf{v}_n)]_{B'} \right].$$

Then

$$[T(\mathbf{x})]_{B'} = A[\mathbf{x}]_B$$

for all  $\mathbf{x} \in \mathbb{R}^n$ . Moreover, A is the only matrix with this property. We write  $[T]_{B',B} = A$ .

## SECTION 8.2: SIMILARITY AND DIAGONALIZABILITY

**Definition 8.2.1.** If A and C are square matrices with the same size, then we say that C is similar to A if there is an invertible matrix P such that  $C = P^{-1}AP$ .

**Theorem 8.2.2.** Two square matrices are similar if and only if there exist bases with respect to which they represent the same linear operator.

**Theorem 8.2.3.** Similar matrices have the same determinant, rank, nullity, trace, characteristic polynomial and eigenvalues, and the eigenvalues have the same algebraic multiplicities.

**Definition.** If  $\lambda_0$  is an eigenvalue of A, the dimension of the eigenspace corresponding to  $\lambda_0$  is called the **geometric multiplicity** of  $\lambda_0$ .

**Theorem 8.2.4.** The eigenvalues of similar matrices have the same geometric multiplicities.

**Theorem 8.2.5.** Suppose that  $C = P^{-1}AP$  and that  $\lambda$  is an eigenvalue of A and C.

- (a) If  $\mathbf{x}$  is an eigenvector of C corresponding to  $\lambda$ , then  $P\mathbf{x}$  is an eigenvector of A corresponding to  $\lambda$ .
- (b) If  $\mathbf{x}$  is an eigenvector of A corresponding to  $\lambda$ , then  $P^{-1}\mathbf{x}$  is an eigenvector of C corresponding to  $\lambda$ .

**The diagonalization problem.** Given a square matrix A, does there exist an invertible matrix P for which  $P^{-1}AP$  is a diagonal matrix? If so, how do we find P? If such a P exists, A is said to be **diagonalizable** and P is said to **diagonalize** A.

**Theorem 8.2.6.** An  $n \times n$  matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. (These vectors must then form a basis for  $\mathbb{R}^n$ .)

## Method for diagonalizing A:

- Step 1. Find n linearly independent eigenvectors of A, say  $\mathbf{p}_1, \dots, \mathbf{p}_n$ .
- Step 2. Form the matrix  $P = [\mathbf{p}_1, \dots, \mathbf{p}_n]$ .
- Step 3. The matrix  $P^{-1}AP$  will be diagonal and will have the eigenvalues corresponding to  $\mathbf{p}_1, \dots, \mathbf{p}_n$  (in this order) on the diagonal.

**Theorem 8.2.7.** If  $\mathbf{v}_1, \dots, \mathbf{v}_k$  are eigenvectors of A corresponding to distinct eigenvalues, then they are linearly independent.

**Theorem 8.2.8.** An  $n \times n$  matrix with n distinct real eigenvalues is diagonalizable.

Note that a matrix can still be diagonalizable even if it does not have n distinct eigenvalues!

**Theorem 8.2.9.** An  $n \times n$  matrix is diagonalizable if and only if the sum of the geometric multiplicities is n.

## **Theorem 8.2.10.** If A is a square matrix, then:

- (a) For each eigenvalue  $\lambda$  of A, geometric multiplicity of  $\lambda \leq$  algebraic multiplicity of  $\lambda$ .
- (b) A is diagonalizable if and only if for every eigenvalue  $\lambda$  of A, geometric multiplicity of  $\lambda$  = algebraic multiplicity of  $\lambda$ .

## **Theorem 8.2.11.** If A is an $n \times n$ matrix, then the following are equivalent:

- (a) A is diagonalizable.
- (b) A has n linearly independent eigenvectors.
- (c)  $\mathbb{R}^n$  has a basis consisting of eigenvectors of A.
- (d) The sum of the geometric multiplication of the eigenvalues of A is n.
- (e) The geometric multiplicity of each eigenvalue of A is the same as the algebraic multiplicity.