
Section 8.1: Matrix representations of linear transformations

Theorem 8.1.1. Let T : Rn → Rn be a linear operator and B = {v1, . . . ,vn} be a basis
for Rn. Define the n× n matrix

[T ]B =
[
[T (v1)]B · · · [T (vn)]B

]
.

Then
[T (x)]B = [T ]B[x]B

for all x ∈ Rn. Moreover, [T ]B is the only matrix with this property. It is called the matrix
for T with respect to B.

Theorem 8.1.2 and Theorem 8.1.3. Let T : Rn → Rn be a linear operator and B =
{v1, . . . ,vn} and B′ = {v′1, . . . ,v′n} be bases for Rn. Then

[T ]B′ = P [T ]BP−1,

where P = PB→B′. If B and B′ are orthonormal bases, then P is orthogonal, so that

[T ]B′ = P [T ]BP T .

This applies in particular to the special case where B′ = S is the standard basis for Rn, in
which case [T ]B′ = [T ].

Theorem 8.1.4. Let T : Rn → Rm be a linear transformation, B = {v1, . . . ,vn} and
B′ = {u1, . . . ,um} be bases for Rn and Rm, respectively. Define the m× n matrix

A =
[
[T (v1)]B′ · · · [T (vn)]B′

]
.

Then
[T (x)]B′ = A[x]B

for all x ∈ Rn. Moreover, A is the only matrix with this property. We write [T ]B′,B = A.

Section 8.2: Similarity and diagonalizability

Definition 8.2.1. If A and C are square matrices with the same size, then we say that C
is similar to A if there is an invertible matrix P such that C = P−1AP .

Theorem 8.2.2. Two square matrices are similar if and only if there exist bases with
respect to which they represent the same linear operator.

Theorem 8.2.3. Similar matrices have the same determinant, rank, nullity, trace, char-
acteristic polynomial and eigenvalues, and the eigenvalues have the same algebraic multi-
plicities.

Definition. If λ0 is an eigenvalue of A, the dimension of the eigenspace corresponding to
λ0 is called the geometric multiplicity of λ0.

Theorem 8.2.4. The eigenvalues of similar matrices have the same geometric multiplici-
ties.

Theorem 8.2.5. Suppose that C = P−1AP and that λ is an eigenvalue of A and C.

(a) If x is an eigenvector of C corresponding to λ, then Px is an eigenvector of A
corresponding to λ.

(b) If x is an eigenvector of A corresponding to λ, then P−1x is an eigenvector of C
corresponding to λ.



The diagonalization problem. Given a square matrix A, does there exist an invertible
matrix P for which P−1AP is a diagonal matrix? If so, how do we find P? If such a P
exists, A is said to be diagonalizable and P is said to diagonalize A.

Theorem 8.2.6. An n × n matrix A is diagonalizable if and only if A has n linearly
independent eigenvectors. (These vectors must then form a basis for Rn.)

Method for diagonalizing A:

Step 1. Find n linearly independent eigenvectors of A, say p1, . . . ,pn.

Step 2. Form the matrix P = [p1, . . . ,pn].

Step 3. The matrix P−1AP will be diagonal and will have the eigenvalues corresponding
to p1, . . . ,pn (in this order) on the diagonal.

Theorem 8.2.7. If v1, . . . ,vk are eigenvectors of A corresponding to distinct eigenvalues,
then they are linearly independent.

Theorem 8.2.8. An n× n matrix with n distinct real eigenvalues is diagonalizable.

Note that a matrix can still be diagonalizable even if it does not have n distinct eigenvalues!

Theorem 8.2.9. An n×n matrix is diagonalizable if and only if the sum of the geometric
multiplicities is n.

Theorem 8.2.10. If A is a square matrix, then:

(a) For each eigenvalue λ of A,

geometric multiplicity of λ ≤ algebraic multiplicity of λ.

(b) A is diagonalizable if and only if for every eigenvalue λ of A,

geometric multiplicity of λ = algebraic multiplicity of λ.

Theorem 8.2.11. If A is an n× n matrix, then the following are equivalent:

(a) A is diagonalizable.

(b) A has n linearly independent eigenvectors.

(c) Rn has a basis consisting of eigenvectors of A.

(d) The sum of the geometric multiplicities of the eigenvalues of A is n.

(e) The geometric multiplicity of each eigenvalue of A is the same as the algebraic
multiplicity.


