Linear Algebra 040a Final Examination Tuesday, December 13, 2005

- 1. [4 marks] Find an equation of the line in \mathbb{R}^4 that is parallel to (3, -1, 1, 2) and passes through (5, 1, 0, -2).
- 2. [6 marks] Find the area of the triangle with vertices (2, -1, 4), (5, -3, 5), and (-2, 2, 2).
- 3. [4 marks] Write down the elementary matrix E that satisfies EA = B where

A =	Γ5	1	9 J			г1	1	0 J	
	2	4	0	and	B =	2	4	0	
	1	1	0			5	1	9	·
	$\lfloor -1 \rfloor$	3	-2			$\lfloor -1 \rfloor$	3	-2	

- 4. [6 marks] Can the vector (3, 1, 1) be expressed as a linear combination of the vectors (2, 5, -1), (1, 6, 0), (5, 2, -4)? Justify your answer.
- 5. [8 marks] Evaluate the determinant of

Γ3	1	1	1	1	
1	3	1	1	1	
$\begin{vmatrix} 1\\ 3 \end{vmatrix}$	1	1 1 3	$\frac{1}{3}$	1	
$\begin{vmatrix} 1\\ 3 \end{vmatrix}$	3	1	3	1	
3	1	$\frac{1}{3}$	1	3	

- 6. [10 marks] Find an orthonormal basis for the span of the vectors (2, 1, -2), (5, 7, 4), (1, 0, -2).
- 7. [6 marks] What is the rank of

F 3	1	0	-1	5	0	ך 4
2	0	1	5	-1	0	2 ?
$\lfloor -7 \rfloor$	0	0	2	4	1	$\begin{bmatrix} 4\\2\\3 \end{bmatrix}?$

Justify your answer.

8. [10 marks] Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be defined by

$$T(x_1, x_2, x_3) = (x_1 + x_2 - x_3, x_1 - x_2 + x_3).$$

If $\mathcal{B} = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ and $\mathcal{B}' = \{(2, 1), (1, -2)\}$ find $[T]_{\mathcal{B}', \mathcal{B}}$. 9. [10 marks] Let

	$\Gamma - 1$	-2	-1	ך 1
A =	0	0	0	$\begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$
A =	0	0	0	1
	0	0	0	-1

Find a diagonal matrix D and an invertible matrix P such that AP = PD. 10. Let the operator $S : \mathbb{R}^3 \to \mathbb{R}^4$ be defined by

$$S(x_1, x_2, x_3) = (x_1 - 4x_2 + 2x_3, 2x_1 + 7x_2 - x_3, -x_1 - 8x_2 + 2x_3, 2x_1 + x_2 + x_3)$$

- (a) [2 marks] Find the standard matrix of S.
- (b) [6 marks] Find a basis for the range of S.

11. [8 marks] Let

$$A = \begin{bmatrix} -1 & -1 & 0 \\ 0 & 2 & 1 \\ -1 & 1 & 0 \\ 2 & 0 & -1 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 4 \\ 5 \\ 0 \\ 0 \end{bmatrix}.$$

Find the vector $\mathbf{x} \in \mathbf{R}^3$ for which $\|\mathbf{b} - A\mathbf{x}\|$ is a small as possible. 12. Circle the correct answers.

- (a) [2 marks] If $\lambda = 0$ is an eigenvalue of A then $\lambda = 0$ is an eigenvalue of $A\mathbf{T}^T$. **F**
- (b) $\begin{bmatrix} 2 \ marks \end{bmatrix}$ Every orthogonal operator on \mathbf{R}^2 is either a rotation or a reflection. \mathbf{T} F
- (c) [2 marks] If U and V are subspaces of \mathbf{R}^n and $U \cap V = \{\mathbf{0}\}$ then $U = V\mathbf{f}^{\perp}$. F
- (d) [2 marks] A 5 × 9 matrix of rank 3 has a 6-dimensional null space. **T F**
- (e) [2 marks] If A is a diagonalizable matrix then A^2 is also diagonalizable **F**
- (f) [2 marks] If \mathcal{B} is any basis of \mathbb{R}^n and \mathcal{B}' is an orthonormal basis of \mathbb{R}^n then for all $\mathbf{x} \in \mathbb{R}^n$ the vectors $[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{B}'}$ have the same length. \mathbf{T}
- (g) [2 marks] It is possible to extend the set

 $\{(1, 1, 1, 1, 1), (1, 2, 3, 4, 5), (1, 4, 9, 16, 25)\}$ a basis of \mathbf{R}^5 **T**

to a basis of \mathbf{R}^5 .

(h) [2 marks] If **u** and **v** are non-zero vectors in \mathbf{R}^n , and

$$\mathbf{w} = \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$$

then \mathbf{w} is orthogonal to \mathbf{u} .

(i) [2 marks] If the columns of A are a basis of \mathbf{R}^n then A must be an $n \times n$ matrix. \mathbf{T} F

(j)
$$\begin{bmatrix} 2 \text{ marks} \end{bmatrix}$$
 The matrix $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ represents the orthogonal projection onto the x-axis. **T F**

 \mathbf{F}

 \mathbf{T}

 \mathbf{F}

 \mathbf{F}