Linear Algebra 040b Final Examination Monday, April 25, 2005

1. [8 marks] Find a basis for the null space of A, where

$$A = \begin{bmatrix} 1 & -2 & 1 & 1 \\ -1 & 2 & 0 & 1 \\ 2 & -4 & 1 & 0 \end{bmatrix}$$

2. [8 marks] Suppose that

$$B = \begin{bmatrix} 1 & 3 & 5 \\ 0 & 1 & 2 \\ 1 & 3 & 6 \end{bmatrix}, \quad C = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 5 & 0 & -2 \end{bmatrix}, \quad D = \begin{bmatrix} -3 & 1 & 2 \\ 1 & 0 & -1 \\ 0 & -2 & 0 \end{bmatrix},$$

and that the 3×3 matrix X satisfies B(X + C) = D. Find X.

3. [8 marks] Let

$$E = \begin{bmatrix} -1 & 7 & 8 \\ 0 & 5 & 6 \\ 0 & 0 & 4 \end{bmatrix}, \text{ and } F = \begin{bmatrix} 3 & 0 & 0 \\ -1 & -5 & 0 \\ 0 & 1 & -2 \end{bmatrix}, .$$

Find det(E), det(F), det(EF), and det(E+F).

- 4. [8 marks] Find the standard matrix of the projection of \mathbb{R}^3 on to the subspace spanned by (1, 1, -2) and (1, 0, -1).
- 5. Let ℓ be the line in \mathbb{R}^3 passing through the points (2, 4, 1) and (4, 0, 7).
 - (a) [2 marks] Find parametric equations for ℓ .
 - (b) [2 marks] Find the point of intersection of ℓ with the xy-plane.
 - (c) [4 marks] Find the point on ℓ that is closest to (8, -5, 7).
- 6. The characteristic polynomial of

$$G = \begin{bmatrix} 5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & -11 \end{bmatrix}.$$

is

$$\det(\lambda I - G) = (\lambda - 1)(\lambda + 3)^2.$$

- (a) [4 marks] Find a basis for the eigenspace of G corresponding to the eigenvalue $\lambda = 1$.
- (b) [4 marks] Find a basis for the eigenspace of G corresponding to the eigenvalue $\lambda = -3$.
- (c) [2 marks] Is G diagonalizable? Justify your answer.
- 7. [8 marks] Find the solution of $H\mathbf{x} = \mathbf{b}$ that lies in the row space of H, where

$$H = \begin{bmatrix} 1 & -1 & 0 & 2 & 0 \\ 3 & 1 & 2 & 1 & 1 \\ -1 & 0 & 1 & 2 & 0 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 9 \\ 5 \\ 9 \end{bmatrix}.$$

8. [6 marks] Find an invertible matrix P and a diagonal matrix Q such that

$$P^{-1}QP = \begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix}.$$

9. Let \mathcal{B} and \mathcal{B}' be the bases

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\} \text{ and } \mathcal{B}' = \left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 1\\-2 \end{bmatrix} \right\}$$

- (a) [4 marks] Find $P_{\mathcal{B}\to\mathcal{B}'}$, the transition matrix from \mathcal{B} to \mathcal{B}' .
- (b) $\begin{bmatrix} 2 & marks \end{bmatrix}$ Is $P_{\mathcal{B} \to \mathcal{B}'}$ orthogonal? Justify your answer.
- (c) [2 marks] If $[x]_{\mathcal{B}} = \begin{bmatrix} 8\\ -6 \end{bmatrix}$ find $[x]_{\mathcal{B}'}$. (d) [2 marks] If $[x]_{\mathcal{B}'} = \begin{bmatrix} 1\\ 3 \end{bmatrix}$ find $[x]_{\mathcal{B}}$. 10. [6 marks] Let $T : \mathbf{R}^3 \to \mathbf{R}^4$ be defined by

$$T(x, y, z) = (x + 3z, 3z - y, 3z + 4y - x, x - 2y + 3z).$$

Find vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ such that $\{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3)\}$ is an orthogonal set in \mathbf{R}^4 . 11. Circle the correct answers.

- (a) [2 marks] If $\mathbf{u} = (-2, 1, 4)$ and $\mathbf{v} = (1, 3, -2, -1)$ are row vectors then the \mathbf{F} matrix $\mathbf{u}^T \mathbf{v}$ has rank 1. (b) [2 marks] If A is the standard matrix of the linear transformation S then
- $\ker(S) = \operatorname{null}(A)$ \mathbf{F} \mathbf{T} (c) [2 marks] If A is an orthogonal matrix then det(A) = 1. \mathbf{T}
- \mathbf{F}
- [2 marks] If U and V are $n \times n$ matrices with det(U) = 2 and det(V) = 5(d) then $\det(U^3 V^{-1} U^T V) = 400.$ Т \mathbf{F}
- (e) [2 marks] The system of equations

$$x + 3y = 5$$

$$-2x + 3y + z = 1$$

$$y + z = -2.$$

		can be solved using Cramer's rule.	\mathbf{T}	\mathbf{F}
(f)	[2 marks]	For any matrix B , rank $(B) = \operatorname{rank}(B^T B) = \operatorname{rank}(BB^T)$.	Т	\mathbf{F}
(g)	[2 marks]	$\{(1,1,2), (1,0,1), (2,1,3)\}$ is a basis of \mathbb{R}^3 .	Т	\mathbf{F}
(h)	[2 marks]	If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$		
		then the equation $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.	\mathbf{T}	\mathbf{F}
(i)	[2 marks]	The matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ has distinct, real eigenvalues if and or	nly if	
		$(a-d)^2 + 4bc > 0.$	\mathbf{T}	\mathbf{F}
(j)	[2 marks]	For any $m \times n$ matrix A and any $m \times 1$ column vector b	• the	

system $(A^T A)\mathbf{x} = A^T \mathbf{b}$ is consistent. \mathbf{T} \mathbf{F}