1. Find the value of t so that

$$\mathbf{v} = \begin{bmatrix} 3\\2\\-1\\4 \end{bmatrix} \quad \text{and} \quad \mathbf{w} = \begin{bmatrix} 1\\-3/2\\t\\1 \end{bmatrix}$$

are orthogonal. Remember to justify your answer. Answers without justification will not recieve credit.

 $\frac{8}{marks}$ 2. Solve the following linear system by row reduction.

Remember to justify your answer. Answers without justification will not recieve credit.

			4	1	2	1		4	1	2	1	
γ	3.	Let $A =$	3	0	1	6	and $B =$	3	0	1	6	. Find an elementary matrix E so
marks			5	7	9	8		8	7	10	14	
			- -	Б			· · · · · · · · · · · · · · · · · · ·	-			A_	

that EA = B. Remember to justify your answer. Answers without justification will not recieve credit.

 $\tilde{7}$

- 4. In both these questions, remember to justify your answer. Answers without justification marks will not receive credit.
 - (a) Show that the collection V of vectors in R^2 of the form $\begin{bmatrix} t \\ 2t \end{bmatrix}$, where t is an arbitrary real number, is a subspace.

(b) Show that the collection W of vectors of the form (a + 1, b, a) in \mathbb{R}^3 with with a and b arbitrary real numbers is not a subspace.

7 marks

5. Find the determinant of the matrix

$$\begin{bmatrix} 6 & -2 & -4 & 4 \\ 3 & -3 & -6 & 1 \\ -12 & 8 & 21 & -8 \\ -6 & 0 & -10 & 7 \end{bmatrix}.$$

Remember to show your work.

- $\tilde{7}$ marks
 - 6. In both the following questions, remember to show all work.
 - (a) Find the characteristic polynomial of $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$.

(b) Find the eigenvalues of A.

4 marks

- 7. Remember to show all work. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation T(x, y, z) = (x y, z, y x).
 - (a) Find a set of vectors that spans the kernel of T.

(b) Find a set of vectors that spans the range of T.

4 marks 8.

Let
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 be the linear transformation

$$T(x,y) = (x-y,2y).$$

Let $U: \mathbb{R}^2 \to \mathbb{R}^2$ be rotation anti-clockwise by $45^\circ = \frac{\pi}{4}$ rad. Find the standard matrix of $U \circ T$. Remember to justify your answer. Answers without justification will not recieve credit.

- 4 marks 9. It is known that $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is a skew-symmetric matrix with det A = -4. Further b > 0. Find a, b, c, d. Remember to justify your answer. Answers without justification will not recieve credit.

 $\begin{array}{ccc} 7 & 10. \\ marks \end{array}$

Find the general equation of the plane in \mathbb{R}^3 passing through the point (1,1,1) and normal to the vector (1,2-2). Remember to justify your answer. Answers without justification will not recieve credit.

7 marks	11.	Which of the following statements is true or false? There is no need to justify your answer.Circle T for true or F for false. If you do not know the answer do not guess; leave the question unanswered.										
		Yo	ou will lose 1.5 marks for each incorrectly answered question	1.								
		(a)	Every spanning set of \mathbb{R}^3 has at least 3 vectors.	Т	F							
		(b)	Suppose S is a collection of vectors in a subspace V. If span $S = V$ then S contains a basis for V.	Т	F							
		(c)	Suppose T is a linear transformation. If \mathbf{v}_1 and \mathbf{v}_2 are in ker(T) then so is $\mathbf{v}_1 - \mathbf{v}_2$.	Т	F							
		(d)	If A is a square matrix then $\det A^3 = 3 \det A$	Т	F							
		(e)	If \mathbf{v}_1 and \mathbf{v}_2 are 2 vectors in \mathbb{R}^3 one can always find a vector \mathbf{v}_3 so that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis of \mathbb{R}^3 .	т	F							
		(f)	The only eigenvalue of an invertible matrix is 1.	Т	F							
		(g)	The columns of an invertible $n \times n$ matrix span \mathbb{R}^n .	Т	\mathbf{F}							

- $\begin{array}{ccc} \gamma & 12. \end{array}$ In both these questions, remember to justify your answer. Answers without justification will not receive credit.
 - (a) Show that the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by T(x, y) = (x + y, 2y) is linear.

(b) Show that the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by T(x, y) = (x+1, 2y) is not linear.

 $\mathcal{7}_{marks}$ 13. Is the linear transformation $T:R^2\to R^2$ with standard matrix

$$M = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \\ \frac{1}{\sqrt{3}} & 0 & \frac{-2}{\sqrt{6}} \end{bmatrix}$$

an orthogonal operator? You must justify your answer, answers without justification will not receive marks.

 $\ensuremath{\mathcal{7}}$ $\ensuremath{$ 14. Show that the collection of vectors marks

$$\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-2 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$

form a basis of \mathbb{R}^3 . You must justify your answer, answers without justification will not receive marks.

 $\begin{array}{ccc} 3 & 15. & \mathrm{Set} \\ marks & \end{array}$

 $f_1 = e_1$ $f_2 = e_1 + 2e_2$ $f_3 = e_1 + 2e_2 + 3e_3$: $f_i = e_1 + 2e_2 + \dots + ie_i$

It is known that A is a 7×7 matrix that has f_i as an eigenvector with eigenvalue 2^i for $1 \le i \le 7$. Find A^{-1} . You must justify your answer, answers without justification will not receive marks.

 $\begin{array}{ll} 3 & 16. \\ marks \end{array} 16. It is known that A is a <math>4 \times 4$ matrix. Some entries of A and the adjoint of A are known and are displayed below. \end{array}

$$A = \begin{bmatrix} a & 10 & 4 & 3 \\ -1 & -1 & -1 & 0 \\ -1 & -2 & 2 & -2 \\ c & 2 & 1 & d \end{bmatrix} \qquad \operatorname{Adj}(A) = \begin{bmatrix} -2 & -14 & * & * \\ 3 & 7 & * & * \\ -1 & 0 & * & * \\ b & 0 & * & * \end{bmatrix}.$$

Find the values of a, b, c, d and the determinant of A. Here the *'s have some fixed value that is unkown to you. You must justify your answer. Answers without justification will not receive marks.

solution of the linear system $A\mathbf{x} = \mathbf{b}$? You must justify your answer. Answers without justification will not receive marks.

Instructor's Name (**Print**)

Student's Name (**Print**)

Student's Signature

THE UNIVERSITY OF WESTERN ONTARIO LONDON CANADA DEPARTMENTS OF APPLIED MATHEMATICS AND MATHEMATICS

Linear Algebra 040b Midterm Examination

Saturday, March 8, 2008

7:00 p.m. - 10:00 p.m.

INSTRUCTIONS

- 1. DO NOT UNSTAPLE THE BOOKLET.
- 2. CALCULATORS AND NOTES ARE NOT PERMITTED.
- 3. SHOW ALL YOUR WORK.
- 4. Questions start on Page 1 and continue to Page 17. Be sure that your booklet is complete. Questions are printed on both sides of the paper.
- 5. TOTAL MARKS = 100.

Student Number (**Print**)

Student's Name (**Print**)

FOR GRADING ONLY

PAGE	MARK
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
TOTAL	