Exercises 1.2

wall el to

u is

i the

pful

f the

well

f the

u =

oe in

of u.

In Exercises 1-6, find u · v.

1.
$$\mathbf{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$
2. $\mathbf{u} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 9 \\ 6 \end{bmatrix}$
30. Let $A = (-3, 2)$, $B = (1, 0)$, and $C = (4, 6)$. Prove the $\triangle ABC$ is a right-angled triangle.

3. $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$
4. $\mathbf{u} = \begin{bmatrix} 1.5 \\ 0.4 \\ -2.1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3.0 \\ 5.2 \\ -0.6 \end{bmatrix}$
51. Let $A = (1, 1, -1)$, $B = (-3, 2, -2)$, and $C = (2, 2, -2)$. Prove that $\triangle ABC$ is a right-angled triangle.

2. $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
3. Let $\mathbf{u} = \begin{bmatrix} 1.5 \\ 0.4 \\ -2.1 \end{bmatrix}$. Prove that $\triangle ABC$ is a right-angled triangle.

3. Find the angle between a diagonal of a cube and an adjacent edge.

5.
$$\mathbf{u} = [1, \sqrt{2}, \sqrt{3}, 0], \mathbf{v} = [4, -\sqrt{2}, 0, -5]$$

6.
$$\mathbf{u} = [1.12, -3.25, 2.07, -1.83],$$

 $\mathbf{v} = [-2.29, 1.72, 4.33, -1.54]$

In Exercises 7–12, find $\|\mathbf{u}\|$ for the given exercise, and give a unit vector in the direction of u.

- 7. Exercise 1
- 8. Exercise 2
- 9. Exercise 3

- 10. Exercise 4
- 11. Exercise 5
- 12. Exercise 6

In Exercises 13–16, find the distance d(u, v) between u and v in the given exercise.

- 13. Exercise 1
- 14. Exercise 2
- 15. Exercise 3
- 16. Exercise 4
- 17. If \mathbf{u}, \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , $n \ge 2$, and c is a scalar, explain why the following expressions make no sense:
 - (a) ||u · v|
- (b) $\mathbf{u} \cdot \mathbf{v} + \mathbf{w}$
- (c) $\mathbf{u} \cdot (\mathbf{v} \cdot \mathbf{w})$
- (d) $c \cdot (\mathbf{u} + \mathbf{w})$

In Exercises 18-23, determine whether the angle between **u** and **v** is acute, obtuse, or a right angle.

18.
$$\mathbf{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
 19. $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$

20.
$$\mathbf{u} = [5, 4, -3], \mathbf{v} = [1, -2, -1]$$

21.
$$\mathbf{u} = [0.9, 2.1, 1.2], \mathbf{v} = [-4.5, 2.6, -0.8]$$

22.
$$\mathbf{u} = [1, 2, 3, 4], \mathbf{v} = [-3, 1, 2, -2]$$

23.
$$\mathbf{u} = [1, 2, 3, 4], \mathbf{v} = [5, 6, 7, 8]$$

In Exercises 24–29, find the angle between **u** and **v** in the given exercise.

- 24. Exercise 18
- 25. Exercise 19
- 26. Exercise 20

- **27.** Exercise 21 **28.** Exercise 22 29. Exercise 23
 - **30.** Let A = (-3, 2), B = (1, 0), and C = (4, 6). Prove that ΔABC is a right-angled triangle.
 - **31.** Let A = (1, 1, -1), B = (-3, 2, -2), and C = (2, 2, -4).
 - adjacent edge.
 - 33. A cube has four diagonals. Show that no two of them are perpendicular.

In Exercises 34–39, find the projection of **v** *onto* **u**. *Draw a* sketch in Exercises 34 and 35.

34. A parallelogram has diagonals determined by the vectors

$$\mathbf{d}_1 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}, \mathbf{and} \ \mathbf{d}_2 = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$$

Show that the parallelogram is a rhombus (all sides of equal length) and determine the side length.

- **35.** The rectangle *ABCD* has vertices at A = (1, 2, 3), B = (3, 6, -2), and C = (0, 5, -4). Determine the coordinates of vertex D.
- **36.** An airplane heading due east has a velocity of 200 miles per hour. A wind is blowing from the north at 40 miles per hour. What is the resultant velocity of the airplane?
- 37. A boat heads north across a river at a rate of 4 miles per hour. If the current is flowing east at a rate of 3 miles per hour, find the resultant velocity of the boat.
- 38. Ann is driving a motorboat across a river that is 2 km wide. The boat has a speed of 20 km/h in still water, and the current in the river is flowing at 5 km/h. Ann heads out from one bank of the river for a dock directly across from her on the opposite bank. She drives the boat in a direction perpendicular to the current.
 - (a) How far downstream from the dock will Ann land?
 - (b) How long will it take Ann to cross the river?
- **39.** Bert can swim at a rate of 2 miles per hour in still water. The current in a river is flowing at a rate of 1 mile per hour. If Bert wants to swim across the river to a point directly opposite, at what angle to the bank of the river must he swim?

In Exercises 40–45, find the projection of **v** onto **u**. *Draw a sketch in Exercises* 40 *and* 41.

40.
$$\mathbf{u} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$
 41. $\mathbf{u} = \begin{bmatrix} 3/5 \\ -4/5 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

42.
$$\mathbf{u} = \begin{bmatrix} 2/3 \\ -2/3 \\ -1/3 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2 \\ -2 \\ 2 \end{bmatrix}$$
 43. $\mathbf{u} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2 \\ -3 \\ -1 \\ -2 \end{bmatrix}$

$$\overset{\text{CAS}}{\longrightarrow} 44. \ \mathbf{u} = \begin{bmatrix} 0.5 \\ 1.5 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2.1 \\ 1.2 \end{bmatrix}$$

45.
$$\mathbf{u} = \begin{bmatrix} 3.01 \\ -0.33 \\ 2.52 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1.34 \\ 4.25 \\ -1.66 \end{bmatrix}$$

Figure 1.39 suggests two ways in which vectors may be used to compute the area of a triangle. The area \mathcal{A} of

Figure 1.39

the triangle in part (a) is given by $\frac{1}{2} \|\mathbf{u}\| \|\mathbf{v} - \operatorname{proj}_{\mathbf{u}}(\mathbf{v})\|$, and part (b) suggests the trigonometric form of the area of a triangle: $\mathcal{A} = \frac{1}{2} \|\mathbf{u}\| \|\mathbf{v}\| \sin\theta$ (We can use the identity $\sin\theta = \sqrt{1 - \cos^2\theta}$ to find $\sin\theta$.)

In Exercises 46 and 47, compute the area of the triangle with the given vertices using both methods.

46.
$$A = (1, -1), B = (2, 2), C = (4, 0)$$

47.
$$A = (3, -1, 4), B = (4, -2, 6), C = (5, 0, 2)$$

In Exercises 48 and 49, find all values of the scalar k for which the two vectors are orthogonal.

48.
$$\mathbf{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} k+1 \\ k-1 \end{bmatrix}$$
 49. $\mathbf{u} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} k^2 \\ k \\ -3 \end{bmatrix}$

50. Describe all vectors
$$\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 that are orthogonal to $\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$.

51. Describe all vectors
$$\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 that are orthogonal to $\mathbf{u} = \begin{bmatrix} a \\ b \end{bmatrix}$.

52. Under what conditions are the following true for vectors **u** and **v** in \mathbb{R}^2 or \mathbb{R}^3 ?

(a)
$$\|u + v\| = \|u\| + \|v\|$$
 (b) $\|u + v\| = \|u\| - \|v\|$

- **53.** Prove Theorem 1.2(b).
- **54.** Prove Theorem 1.2(d).

In Exercises 55–57, prove the stated property of distance between vectors.

55.
$$d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$$
 for all vectors \mathbf{u} and \mathbf{v}

56.
$$d(u, w) \le d(u, v) + d(v, w)$$
 for all vectors u, v , and w

57.
$$d(\mathbf{u}, \mathbf{v}) = 0$$
 if and only if $\mathbf{u} = \mathbf{v}$

58. Prove that $\mathbf{u} \cdot c\mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})$ for all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n and all scalars c.

59. Prove that
$$\|\mathbf{u} - \mathbf{v}\| \ge \|\mathbf{u}\| - \|\mathbf{v}\|$$
 for all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n . [*Hint*: Replace \mathbf{u} by $\mathbf{u} - \mathbf{v}$ in the Triangle Inequality.]

60. Suppose we know that $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$. Does it follow that $\mathbf{v} = \mathbf{w}$? If it does, give a proof that is valid in \mathbb{R}^n ; otherwise, give a *counterexample* (that is, a *specific* set of vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} for which $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$ but $\mathbf{v} \neq \mathbf{w}$).

61. Prove that $(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = \|\mathbf{u}\|^2 - \|\mathbf{v}\|^2$ for all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n .

62. (a) Prove that
$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$$
 for all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n .

(b) Draw a diagram showing \mathbf{u} , \mathbf{v} , $\mathbf{u} + \mathbf{v}$, and $\mathbf{u} - \mathbf{v}$ in \mathbb{R}^2 and use (a) to deduce a result about parallelograms.

63. Prove that
$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{4} \|\mathbf{u} + \mathbf{v}\|^2 - \frac{1}{4} \|\mathbf{u} - \mathbf{v}\|^2$$
 for all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n .

- 64. (a) Prove that $\|\mathbf{u} + \mathbf{v}\| = \|\mathbf{u} \mathbf{v}\|$ if and only if \mathbf{u} and \mathbf{v} are orthogonal.
 - (b) Draw a diagram showing $\mathbf{u}, \mathbf{v}, \mathbf{u} + \mathbf{v}$, and $\mathbf{u} \mathbf{v}$ in \mathbb{R}^2 and use (a) to deduce a result about parallelograms.
- **65.** (a) Prove that $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} \mathbf{v}$ are orthogonal in \mathbb{R}^n if and only if $\|\mathbf{u}\| = \|\mathbf{v}\|$.
 - (b) Draw a diagram showing $\mathbf{u}, \mathbf{v}, \mathbf{u} + \mathbf{v}$, and $\mathbf{u} \mathbf{v}$ in \mathbb{R}^2 and use (a) to deduce a result about parallelograms.
- **66.** If $\|\mathbf{u}\| = 2$, $\|\mathbf{v}\| = \sqrt{3}$, and $\mathbf{u} \cdot \mathbf{v} = 1$, find $\|\mathbf{u} + \mathbf{v}\|$.
- **67.** Show that there are no vectors \mathbf{u} and \mathbf{v} such that $\|\mathbf{u}\| = 1$, $\|\mathbf{v}\| = 2$, and $\mathbf{u} \cdot \mathbf{v} = 3$.
- 68. (a) Prove that if **u** is orthogonal to both **v** and **w**, then **u** is orthogonal to **v** + **w**.
 - (b) Prove that if u is orthogonal to both v and w, then u is orthogonal to sv + tw for all scalars s and t.
- **69.** Prove that **u** is orthogonal to $\mathbf{v} \text{proj}_{\mathbf{u}}(\mathbf{v})$ for all vectors **u** and **v** in \mathbb{R}^n , where $\mathbf{u} \neq \mathbf{0}$.
- 70. (a) Prove that $\text{proj}_{\mathbf{u}}(\text{proj}_{\mathbf{u}}(\mathbf{v})) = \text{proj}_{\mathbf{u}}(\mathbf{v})$.

v

1 w

 $1 \mathbb{R}^n$

et

- (b) Prove that $\text{proj}_{\mathbf{u}}(\mathbf{v} \text{proj}_{\mathbf{u}}(\mathbf{v})) = \mathbf{0}$.
- (c) Explain (a) and (b) geometrically.
- 71. The Cauchy-Schwarz Inequality $|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| \, ||\mathbf{v}||$ is equivalent to the inequality we get by squaring both sides: $(\mathbf{u} \cdot \mathbf{v})^2 \le ||\mathbf{u}||^2 \, ||\mathbf{v}||^2$.
 - (a) In \mathbb{R}^2 , with $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, this becomes

$$(u_1v_1 + u_2v_2)^2 \le (u_1^2 + u_2^2)(v_1^2 + v_2^2)$$

Prove this algebraically. [*Hint*: Subtract the left-hand side from the right-hand side and show that the difference must necessarily be nonnegative.]

(b) Prove the analogue of (a) in \mathbb{R}^3 .

72. Another approach to the proof of the Cauchy-Schwarz Inequality is suggested by Figure 1.40, which shows that in \mathbb{R}^2 or \mathbb{R}^3 , $\|\text{proj}_{\mathbf{u}}(\mathbf{v})\| \leq \|\mathbf{v}\|$. Show that this is equivalent to the Cauchy-Schwarz Inequality.

Figure 1.40

73. Use the fact that $\text{proj}_{\mathbf{u}}(\mathbf{v}) = c\mathbf{u}$ for some scalar c, together with Figure 1.41, to find c and thereby derive the formula for $\text{proj}_{\mathbf{u}}(\mathbf{v})$.

Figure 1.41

74. Using mathematical induction, prove the following generalization of the Triangle Inequality:

$$\|\mathbf{v}_1 + \mathbf{v}_2 + \dots + \mathbf{v}_n\| \le \|\mathbf{v}_1\| + \|\mathbf{v}_2\| + \dots + \|\mathbf{v}_n\|$$
 for all $n \ge 1$.