Math 1600A Lecture 10, Section 002, 30 Sept 2013

Announcements:

Continue **reading** Section 2.3 for next class. Work through recommended homework questions.

Midterm 1 is on Thursday (Oct 3), 7-8:30pm. It covers until the end of Section 2.2, except for linear systems over \mathbb{Z}_m . A **practice exam** is available from the course home page. Last name A-Q must write in **NS1**, R-Z in **NS7**. See the missed exam section of the course web page for policies, including for illness.

Extra Linear Algebra Review Session: Tuesday, Oct 1, 4:30-6:30, MC107.

Tutorials: No quiz, focused on review. Take advantage of it!

Office hour: today, 1:30-2:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Partial review of Section 2.2, Lectures 8 and 9:

Associated to a system of linear equations is an **augmented matrix** $[A \mid \vec{b}]$. We call A the **coefficient matrix**.

Performing the following **elementary row operations** on the augmented matrix doesn't change the solution set:

- 1. Exchange two rows.
- 2. Multiply a row by a **nonzero** constant.
- 3. Add a multiple of one row to another.

Definition: A matrix is in row echelon form (REF) if it satisfies:

- 1. Any rows that are entirely zero are at the bottom.
- 2. In each nonzero row, the first nonzero entry (called the **leading entry**) is further to the right than any leading entries above it.

Definition: A matrix is in reduced row echelon form (RREF) if:

- 1. It is in row echelon form.
- 2. The leading entry in each nonzero row is a 1 (called a **leading 1**).
- 3. Each column containing a leading 1 is zero everywhere else.

Example: Are the following systems in reduced row echelon form (RREF) and/or row echelon form (REF)?

г.	_		1	Γ0	1	0	0]	٢O	1	3	0	4	0]	Γ1	3	0	4
1	2	3		0	0	1	0	0	0	0	1	5	0	0	0	1	5
$\lfloor 0$	1	2		0	0	0	2		0	0	0	0	1	0	0	6	0
ł	REI	F			RI	EF		R	EF	'an	d R	RE	F		$n\epsilon$	eith	er

We can always use the elementary row operations to get a matrix into REF and RREF:

Row reduction steps: (This technique is *crucial* for the whole course.)

- (a) Find the leftmost column that is not all zeros.
- (b) If the top entry is zero, exchange rows to make it nonzero.
- (b') It may be convenient to scale this row to make the leading entry into a 1.
- For RREF, it is almost always best to do this now.
- (c) Use the leading entry to create zeros below it, and above it for RREF.
- (d) Cover up the row containing the leading entry, and repeat starting from step (a).

Note: Row echelon form is not unique, but reduced row echelon form is.

Gaussian elimination: This means to do row reduction on the augmented matrix until you get to row echelon form, and then use back substitution to find the solutions.

Gauss-Jordan elimination: This means to do row reduction on the augmented matrix until you get to **reduced** row echelon form, and then use back substitution to find the solutions.

Back substitution: We call the variables corresponding to a column with a leading entry the **leading variables**, and the remaining variables the **free variables**. We solve for the leading variables in terms of the free variables, and assign parameters to the free variables.

Definition: For any matrix A, the **rank** of A is the number of nonzero rows in its row echelon form. It is written rank(A). (We'll see later that this is the same for all row echelon forms of A.)

Note: The number of leading variables equals the rank of the coefficient matrix.

Theorem 2.2: Let A be the coefficient matrix of a linear system with n variables. If the system is consistent, then

number of free variables $= n - \operatorname{rank}(A)$.

Consistency: You can tell whether the system is consistent or inconsistent from the row echelon form of the augmented matrix:

- If one of the rows is zero except for the last entry, then the system is **inconsistent**.

- If this doesn't happen, then the system is **consistent**, and Theorem 2.2 applies.

Homogeneous Systems

Definition: A system of linear equations is **homogeneous** if the constant term in each equation is zero.

Theorem 2.3: A homogeneous system $[A \mid \vec{0}]$ is always consistent. Moreover, if there are m equations and n variables and m < n, then the system has infinitely many solutions.

Note: If $m \ge n$ the system may have infinitely many solutions or it may have only the zero solution.

New material: Section 2.3: Spanning Sets and Linear Independence

Linear combinations

Recall: A vector \vec{v} is a **linear combination** of vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ if there exist scalars c_1, c_2, \ldots, c_k (called coefficients) such that

$$c_1 \vec{v}_1 + \dots + c_k \vec{v}_k = \vec{v}.$$

Example: Is $\begin{bmatrix} 4\\8\\6 \end{bmatrix}$ a linear combination of $\begin{bmatrix} 4\\5\\6 \end{bmatrix}$ and $\begin{bmatrix} 2\\1\\3 \end{bmatrix}$?

That is, can we find scalars x and y such that

$$x \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} + y \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \\ 6 \end{bmatrix}?$$

Expanding this into components, this becomes a linear system

$$4x + 2y = 4$$

 $5x + y = 8$
 $6x + 3y = 6$

and we **already know** how to determine whether this system is consistent: use **row reduction**!

The augmented matrix is

Γ	4	2	4	
	5	1	8	\Leftarrow Note that the vectors appear as the columns here.
L	6	3	6	

This has row echelon form (work omitted)

1	1/2	1]
0	-3/2	3	.
0	0	0	

From this, we can already see that the system is consistent, so the answer is YES.

If we want to find x and y, we can use back substitution (maybe first going to RREF), and we find that x = 2 and y = -2 is the unique solution. (Do this at home.)

Example: Is
$$\begin{bmatrix} 4\\8\\8 \end{bmatrix}$$
 a linear combination of $\begin{bmatrix} 4\\5\\6 \end{bmatrix}$ and $\begin{bmatrix} 2\\1\\3 \end{bmatrix}$?

Solution: The augmented matrix

$$\left[\begin{array}{cc|c} 4 & 2 & | & 4 \\ 5 & 1 & | & 8 \\ 6 & 3 & | & 8 \end{array}\right]$$

has row echelon form

$$\left[\begin{array}{cc|c} 1 & 1/2 & 1 \\ 0 & -3/2 & 3 \\ 0 & 0 & 2 \end{array} \right]$$

and so the system is inconsistent and the answer is NO.

Theorem 2.4: A system with augmented matrix $[A \mid \vec{b}]$ is consistent if and only if \vec{b} is a linear combination of the columns of A.

This gives a **different** geometrical way to understand the solutions to a system. For example, consider the following system from Lecture 7:

$$x+y=2 \ -x+y=4$$

We already know that we can interpret this as finding the point of intersection of two lines in \mathbb{R}^2 , and so in this case we get a unique solution (x=-1, y=3).

But we can also interpret this as writing $\begin{bmatrix} 2\\ 4 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1\\ -1 \end{bmatrix}$ and $\begin{bmatrix} 1\\ 1 \end{bmatrix}$, which has a different geometric interpretation. (Pictures on whiteboard.)

Consider also these systems (on whiteboard):

x-~y=2	x+2y=2
2x - 2y = 4	x + 2y = 3

Spanning Sets of Vectors

Definition: If $S = {\vec{v}_1, \ldots, \vec{v}_k}$ is a set of vectors in \mathbb{R}^n , then the set of *all* linear combinations of $\vec{v}_1, \ldots, \vec{v}_k$ is called the **span** of $\vec{v}_1, \ldots, \vec{v}_k$ and is denoted $\operatorname{span}(\vec{v}_1, \ldots, \vec{v}_k)$ or $\operatorname{span}(S)$. If $\operatorname{span}(S) = \mathbb{R}^n$, then S is called a **spanning set** for \mathbb{R}^n .

Example: The vectors $ec{e}_1=egin{bmatrix}1\\0\end{bmatrix}$ and $ec{e}_2=egin{bmatrix}0\\1\end{bmatrix}$ are a spanning set for \mathbb{R}^2 , since

for any vector
$$ec{x} = egin{bmatrix} a \ b \end{bmatrix}$$
 we have $a egin{bmatrix} 1 \ 0 \end{bmatrix} + b egin{bmatrix} 0 \ 1 \end{bmatrix} = egin{bmatrix} a \ b \end{bmatrix}.$

Another way to see this is that the augmented matrix associated to $ec{e}_1$, $ec{e}_2$ and $ec{x}$ is

$$\left[\begin{array}{cc|c}1&0&a\\0&1&b\end{array}\right]$$

which is already in RREF and is consistent.

Similarly, the standard unit vectors in \mathbb{R}^n are a spanning set for \mathbb{R}^n .

Example: Find the span of
$$ec{u} = egin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $ec{v} = egin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$.

Solution: The span consists of every vector \vec{x} that can be written as

$$ec{x} = sec{u} + tec{v}$$

for some scalars s and t. Since \vec{u} and \vec{v} are not parallel, this is the plane through the origin in \mathbb{R}^3 with direction vectors \vec{u} and \vec{v} .

Example: What is the span of $\begin{bmatrix} 1\\3 \end{bmatrix}$ and $\begin{bmatrix} 2\\4 \end{bmatrix}$? Intuitively, they are not parallel, so their linear combinations should fill out all of \mathbb{R}^2 . We'll show how to see this algebraically, by row reducing the augmented matrix

Г			1	Г
	1	2	a	
	3	4	b	
L				_