Math 1600A Lecture 11, Section 002, 2 Oct 2013

Announcements:

Read Section 2.4 for next class. Work through recommended homework questions.

Midterm 1 is tomorrow 7-8:30pm. It covers until the end of Section 2.2, except for linear systems over \mathbb{Z}_m . A **practice exam** is available from the course home page. Last name A-Q must write in **NS1**, R-Z in **NS7**. See the missed exam section of the course web page for policies, including for illness.

Tutorials: No quiz, focused on review. Take advantage of them! No quizzes next week either.

Office hour: today, 12:30-1:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

These **lecture notes** now available in pdf format as well, a day or two after each lecture. Be sure to let me know of technical problems.

Partial review of Lecture 10:

Linear combinations

Recall: A vector \vec{v} is a **linear combination** of vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ if there exist $\mathsf{scalars}\ c_1, c_2, \ldots, c_k$ (called coefficients) such that

$$
c_1\vec{v}_1 + \dots + c_k\vec{v}_k = \vec{v}.
$$

Example: Is $\begin{bmatrix} 4 \\ 8 \\ 6 \end{bmatrix}$ a linear combination of $\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$?

That is, can we find scalars x and y such that

$$
x\left[\begin{matrix}4\\5\\6\end{matrix}\right]+y\left[\begin{matrix}2\\1\\3\end{matrix}\right]=\left[\begin{matrix}4\\8\\6\end{matrix}\right]?
$$

Expanding this into components, this becomes a linear system

and we **already know** how to determine whether this system is consistent: use **row reduction**!

Theorem 2.4: A system with augmented matrix $[A \mid \vec{b}]$ is consistent if and only if \vec{b} is a linear combination of the columns of A_\cdot

This gives a **different** geometrical way to understand the solutions to a system.

Spanning Sets of Vectors

 ${\bf Definition}\colon$ If $S=\{\vec{v}_1,\ldots,\vec{v}_k\}$ is a set of vectors in \mathbb{R}^n , then the set of *all* linear combinations of $\vec{v}_1,\ldots,\vec{v}_k$ is called the span of $\vec{v}_1,\ldots,\vec{v}_k$ and is denoted or $\text{span}(S)$. If $\mathrm{span}(S) = \mathbb{R}^n$, then S is called a **spanning set** for \mathbb{R}^n . $\mathrm{span} (\vec v_1, \dots, \vec v_k)$ or $\mathrm{span}(S)$ $\operatorname{span}(S) = \mathbb{R}^n$, then S is called a $\operatorname{\boldsymbol{\mathsf{s}}p}$ and $\operatorname{\boldsymbol{\mathsf{set}}}$ for \mathbb{R}^n

 $\textsf{\textbf{Example:}}~\text{span}(\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n) = \mathbb{R}^n.$

Example: The span of
$$
\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}
$$
 and $\vec{v} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$ consists of every vector \vec{x} that

can be written as

$$
\vec{x} = s\vec{u} + t\vec{v}
$$

for some scalars s and $t.$ Since \vec{u} and \vec{v} are not parallel, this is the plane through the origin in \mathbb{R}^3 with direction vectors \vec{u} and $\vec{v}.$

New material: Section 2.3: Spanning Sets and Linear Independence

 $\textbf{Question: } \text{What is } \text{span}(\left \lfloor \frac{1}{2} \right \rfloor) \text{? } \text{What is } \text{span}(\left \lfloor \frac{1}{2} \right \rfloor, \left \lfloor \frac{2}{4} \right \rfloor) \text{?}$ 2 4

Question: We saw that $\text{span}(\left|\begin{array}{c}1\0\end{array}\right|,\left|\begin{array}{c}0\1\end{array}\right|)=\mathbb{R}^2.$ What is $\text{span}(\left|\begin{array}{c}1\0\end{array}\right|,\left|\begin{array}{c}0\1\end{array}\right|,\left|\begin{array}{c}2\1\end{array}\right|)$? 0 $\begin{pmatrix} 0 \ 1 \end{pmatrix}) = \mathbb{R}^2.$ What is $\text{span}(\begin{bmatrix} 1 \ 0 \end{bmatrix}, \begin{bmatrix} 0 \ 1 \end{bmatrix}, \begin{bmatrix} 2 \ 4 \end{bmatrix})$ 0 1 2 4

 ${\sf Question}\colon$ What vector is always in ${\rm span}(\vec v_1, \vec v_2, \dots, \vec v_k)$?

Linear Dependence and Independence

Suppose that we have vectors \vec{u} , \vec{v} and \vec{w} in \mathbb{R}^n such that $2\vec{u}+3\vec{v}-2\vec{w}=\vec{0}$. This can be solved for any of the vectors in terms of the others, e.g. $\vec{u}=-\frac{3}{2}\,\vec{v}+\vec{w}$. We say that these vectors are **linearly dependent**.

 ${\bf Definition:}$ A set of vectors $\vec{v}_1, \ldots, \vec{v}_k$ is linearly dependent if there are scalars c_1, \ldots, c_k , <u>at least one of which is nonzero</u>, such that

$$
c_1\vec{v}_1+\cdots+c_k\vec{v}_k=\vec{0}.
$$

Since at least one of the scalars is non-zero, the corresponding vector can be expressed as a linear combination of the others.

Example:
$$
\begin{bmatrix} -2 \\ 4 \end{bmatrix} - 2 \begin{bmatrix} -1 \\ 2 \end{bmatrix} + 0 \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$
, so the vectors $\begin{bmatrix} -2 \\ 4 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 5 \\ 6 \end{bmatrix}$ are linearly dependent.

Note that either of the first two can be expressed as a linear combination of the other, but the third one is not a linear combination of the first two.

Example: Are the vectors
$$
\vec{e}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$
 and $\vec{e}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ linearly dependent?

Solution: If $c \, \vec{e}_1 + d \, \vec{e}_2 = \vec{0}$ and $c \neq 0$, then $\vec{e}_1 = -\, \frac{d}{c} \, \vec{e}_2$, which is not possible.

Similarly, if $d\neq 0$, then \vec{e}_2 is a multiple of $\vec{e}_1.$ So the only way to have $c \, \vec{e}_1 + d \, \vec{e}_2 = \vec{0}$ is with $c = d = 0.$

 ${\sf Theorem\ 2.5}$: The vectors $\vec{v}_1,\ldots,\vec{v}_k$ are linearly dependent if and only if at least one of them can be expressed as a linear combination of the others.

Proof: We've seen one direction. For the other, if $\vec{v}_k = c_1 \vec{v}_1 + \cdots c_{k-1} \vec{v}_{k-1}$, then $c_1\vec{v}_1+\cdots c_{k-1}\vec{v}_{k-1}-\vec{v}_k=\vec{0}$, so the vectors are linearly dependent. The same argument works if it is a different vector that can be expressed in terms of the others.

Example: What about the vectors \vec{e}_1 , \vec{e}_2 and $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$? 0

Solution: They are linearly dependent, since

$$
0\bigg[\!\begin{array}{c}1\\0\end{array}\!\bigg]+0\bigg[\!\begin{array}{c}0\\1\end{array}\!\bigg]+1\bigg[\!\begin{array}{c}0\\0\end{array}\!\bigg]=\bigg[\!\begin{array}{c}0\\0\end{array}\!\bigg].
$$

Fact: Any set of vectors containing the zero vector is linearly dependent.

 $\textbf{Definition:}~A \text{ set of vectors } \vec{v}_1, \ldots, \vec{v}_k$ is linearly <u>in</u>dependent if it is not linearly dependent.

Another way to say this is that the system

$$
c_1\vec{v}_1+\cdots+c_k\vec{v}_k=\vec{0}.
$$

has only the trivial solution $c_1=\cdots=c_k=0.$

This is something we know how to figure out! Use **row reduction**!

Example: Are the vectors
$$
\vec{u} = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}
$$
, $\vec{v} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 6 \\ -4 \\ -2 \end{bmatrix}$ linearly independent?

independent?

That is, does the system

$$
c_1\left[\begin{array}{c} -1 \\ 3 \\ 2 \end{array}\right] + c_2\left[\begin{array}{c} 2 \\ 1 \\ 1 \end{array}\right] + c_3\left[\begin{array}{c} 6 \\ -4 \\ -2 \end{array}\right] = \vec{0}
$$

have a non-trivial solution?

The augmented matrix is

$$
\left[\begin{array}{ccc|c} -1 & 2 & 6 & 0 \\ 3 & 1 & -4 & 0 \\ 2 & 1 & -2 & 0 \end{array}\right] \text{ which row reduces to } \left[\begin{array}{ccc|c} -1 & 2 & 6 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]
$$

So what's the answer? There are 3 variables and 2 leading variables (the rank is 2), so there is one free variable, which means there are non-trivial solutions. Therefore, the vectors are linearly **dependent**.

Example: Are the vectors
$$
\vec{u} = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}
$$
, $\vec{v} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 6 \\ -4 \\ 3 \end{bmatrix}$ linearly

independent?

That is, does the system

$$
c_1\left[\begin{array}{c}-1\\3\\2\end{array}\right]+c_2\left[\begin{array}{c}2\\1\\1\end{array}\right]+c_3\left[\begin{array}{c}6\\-4\\3\end{array}\right]=\vec{0}
$$

have a non-trivial solution?

The augmented matrix is

$$
\left[\begin{array}{ccc|c} -1 & 2 & 6 & 0 \\ 3 & 1 & -4 & 0 \\ 2 & 1 & 3 & 0 \end{array}\right] \text{ which row reduces to } \left[\begin{array}{ccc|c} -1 & 2 & 6 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \end{array}\right]
$$

So what's the answer? There are 3 variables and 3 leading variables (the rank is 3), so there are no free variables, which means there is only the trivial solution. Therefore, the vectors are linearly **independent**.

Example 2.24: Are the standard unit vectors $\vec{e}_1, \ldots, \vec{e}_n$ in \mathbb{R}^n linearly independent?

Solution: The augmented matrix is

with n rows and n variables. The rank is n , so there is only the trivial solution. So the standard unit vectors are linearly **independent**.

Note: You can sometimes see by inspection that some vectors are linearly dependent, e.g. if they contain the zero vector, or if one is a scalar multiple of another. Here's one other situation:

Theorem 2.8: If $m > n$, then any set of m vectors in \mathbb{R}^n is linearly dependent.

Proof: The system is a homogeneous system with m variables and n equations. By Theorem 2.3, a homogeneous system with more variables than equations always has a non-trivial solution.

On whiteboard: An example like Example 2.25 in the text, and a discussion of Theorem 2.7.