
Math 1600A Lecture 14, Section 2, 9 Oct
2013

Announcements:

Continue reading Section 3.1 (partitioned matrices) and Section 3.2 for next class,
and Section 3.3 for Wednesday. Work through recommended homework questions.

Tutorials: No quizzes this week, focused on review. Midterms will be handed back.

Solutions to the midterm are available from the course home page.

Office hour: today, 12:30-1:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Partial review of Lecture 13:

Section 3.1: Matrix Operations

Definition: An matrix  is a rectangular array of numbers called the
entries, with  rows and  columns.  is called square if .

The entry in the th row and th column of  is usually written  or sometimes .

If  is square and the nondiagonal entries are all zero, then  is called a diagonal
matrix.

Definition: A diagonal matrix with all diagonal entries equal is called a scalar
matrix. A scalar matrix with diagonal entries all equal to  is an identity matrix.
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Note: Identity  scalar  diagonal  square.

Matrix addition and scalar multiplication

Our first two operations are just like for vectors:

Definition: If  and  are both  matrices, then their sum  is the
 matrix obtained by adding the corresponding entries of  and :

.

Definition: If  is an  matrix and  is a scalar, then the scalar multiple
is the  matrix obtained by multiplying each entry by : .

New material: Section 3.2: Matrix Algebra

Addition and scalar multiplication for matrices behave exactly like addition and
scalar multiplication for vectors, with the entries just written in a rectangle instead of
in a row or column.

Theorem 3.2: Let ,  and  be matrices of the same size, and let  and  be
scalars. Then:

(a) 
(commutativity)

(b) 
(associativity)

(c) (d) 

(e) 
(distributivity) 

(f)  (distributivity)

(g) (h) 

Compare to Theorem 1.1.

This means that all of the concepts for vectors transfer to matrices.

E.g., manipulating matrix equations:
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identity matrix

⎡
⎣
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⎤
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scalar

O =
⎡
⎣

0
0
0

0
0
0

0
0
0

⎤
⎦

scalar

⟹ ⟹ ⟹

A B m × n A + B
m × n A B
A + B = [ + ]aij bij

A m × n c cA
m × n c cA = [c ]aij

A B C c d

A + B = B + A (A + B) + C = A + (B + C)

A + O = A A + (−A) = O

c(A + B) = cA + cB (c + d)A = cA + dA

c(dA) = (cd)A 1A = A

2(A + B) − 3(2B − A) = 2A + 2B − 6B + 3A = 5A − 4B.
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We define a linear combination to be a matrix of the form:

And we can define the span of a set of matrices to be the set of all their linear
combinations.

And we can say that the matrices  are linearly independent if

has only the trivial solution , and are linearly dependent
otherwise.

Our techniques for vectors also apply to answer questions such as:

Example 3.16 (a): Suppose

Is  a linear combination of ,  and ?

That is, are there scalars ,  and  such that

Rewriting the left-hand side gives

and this is equivalent to the system

and we can use row reduction to determine that there is a solution, and to find it if
desired: , so .

This works exactly as if we had written the matrices as column vectors and asked

+ + ⋯ + .c1A1 c2A2 ckAk

, , … ,A1 A2 Ak

+ + ⋯ + = Oc1A1 c2A2 ckAk

= ⋯ = = 0c1 ck

= [ ] = [ ] = [ ] B = [ ]A1
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c1 c2 c3

[ ] + [ ] + [ ] = [ ]?c1
0
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1
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0

0
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1

1
1

1
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4
1

[ ] = [ ]+c2 c3

− +c1 c3

+c1 c3

+c2 c3

1
2

4
1

+c2 c3

+c1 c3

− +c1 c3

+c2 c3

= 1
= 4
= 2
= 1

= 1, = −2, = 3c1 c2 c3 − 2 + 3 = BA1 A2 A3
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the same question.

See also Examples 3.16(b), 3.17 and 3.18 in text.

More review of Lecture 13:

Matrix multiplication

Definition: If  is  and  is , then the product  is the 
matrix whose  entry is

This is the dot product of the th row of  with the th column of .

Powers

In general,  doesn't make sense. But if  is  (square), then it makes
sense to define the power

We write  and .

We will see in a moment that , so the expression for  is
unambiguous. And it follows that

for all nonnegative integers  and .

New material: Section 3.2: Matrix Algebra (continued)

Properties of Matrix Multiplication and Powers

This is new ground, as you can't multiply vectors.

For the most part, matrix multiplication behaves like multiplication of real numbers,

A m × n B n × r C = AB m × r
i, j

= + + ⋯ + = .cij ai1b1j ai2b2j ainbnj ∑
k=1

n

aikbkj

i A j B

A

m × n

B

n × r

= AB

m × r

= AAA2 A n × n

= AA ⋯ A with k factors.Ak

= AA1 =A0 In

(AB)C = A(BC) Ak

= and ( =ArAs Ar+s Ar)s
Ars

r s
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but there are several differences:

Example 3.13 on whiteboard: Powers of

Question: Is there a nonzero matrix  such that ?

Yes. For example, take

Challenge problems: Find a  matrix  such that  but .

Find a  matrix  such that  but .

Example on whiteboard: Tell me the entries of two  matrices  and , and
let's compute  and .

So we've seen:

We can have  but  for some .

We can have , but .
We can have .

But most expected properties do hold:

Theorem 3.3: Let ,  and  be matrices of the appropriate sizes, and let  be a
scalar. Then:

(a) (associativity)

(b) (left distributivity)

(c) (right distributivity)

(d) (no cool name)

(e)  if  is (identity)

The text proves (b) and half of (e). (c) and the other half of (e) are the same, with
right and left reversed.

Proof of (d):

B = [ ]0
1

−1
0

A = OA2

A = [ ] or A = [ ].0
0

1
0

2
−1

4
−2

3 × 3 A ≠ OA2 = OA3

2 × 2 A A ≠ I2 =A3 I2

2 × 2 A B
AB BA

A ≠ O = OAk k > 1
B ≠ ±I = IB4

AB ≠ BA

A B C k

A(BC) = (AB)C

A(B + C) = AB + AC

(A + B)C = AC + BC

k(AB) = (kA)B = A(kB)
A = A = AIm In A m × n
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so . The other part of (d) is similar.

Proof of (a):

so .

On Friday: more from Sections 3.1 and 3.2: Transpose, symmetric matrices,
partitioned matrices.

.

(k(AB))ij = k(AB = k( (A) ⋅ (B)))ij rowi colj

= (k (A)) ⋅ (B) = (kA) ⋅ (B) = ((kA)Browi colj rowi colj )ij

k(AB) = (kA)B

((AB)C)ij = (AB =∑
k

)ikCkj ∑
k

∑
l

AilBlkCkj

= = (BC = (A(BC)∑
l

∑
k

AilBlkCkj ∑
l

Ail )lj )ij

A(BC) = (AB)C
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