Math 1600A Lecture 14, Section 2, 9 Oct 2013

Announcements:

Continue **reading** Section 3.1 (partitioned matrices) and Section 3.2 for next class, and Section 3.3 for Wednesday. Work through recommended homework questions.

Tutorials: No quizzes this week, focused on review. **Midterms** will be handed back.

Solutions to the midterm are available from the course home page.

Office hour: today, 12:30-1:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Partial review of Lecture 13:

Section 3.1: Matrix Operations

Definition: An $m \times n$ matrix A is a rectangular array of numbers called the **entries**, with m rows and n columns. A is called **square** if m=n.

The entry in the *i*th row and *j*th column of A is usually written a_{ij} or sometimes A_{ij} .

If A is square and the <u>non</u>diagonal entries are all zero, then A is called a **diagonal** matrix.

$$\begin{bmatrix} 1 & -3/2 & \pi \\ \sqrt{2} & 2.3 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

not square or diagonal

square

diagonal

diagonal

Definition: A diagonal matrix with all diagonal entries equal is called a **scalar matrix**. A scalar matrix with diagonal entries all equal to 1 is an **identity matrix**.

$$I_3 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} \qquad egin{bmatrix} 3 & 0 & 0 \ 0 & 3 & 0 \ 0 & 0 & 3 \end{bmatrix} \qquad O = egin{bmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}$$
 identity matrix scalar scalar

Note: Identity \implies scalar \implies diagonal \implies square.

Matrix addition and scalar multiplication

Our first two operations are just like for vectors:

Definition: If A and B are <u>both</u> $m \times n$ matrices, then their **sum** A+B is the $m \times n$ matrix obtained by adding the corresponding entries of A and B: $A+B=[a_{ij}+b_{ij}]$.

Definition: If A is an $m \times n$ matrix and c is a scalar, then the **scalar multiple** cA is the $m \times n$ matrix obtained by multiplying each entry by c: $cA = [c \ a_{ij}]$.

New material: Section 3.2: Matrix Algebra

Addition and scalar multiplication for matrices behave **exactly** like addition and scalar multiplication for vectors, with the entries just written in a rectangle instead of in a row or column.

Theorem 3.2: Let A, B and C be matrices of the same size, and let c and d be scalars. Then:

$$\begin{array}{ll} \text{(a) } A+B=B+A & \text{(b) } (A+B)+C=A+(B+C) \\ \text{(commutativity)} & \text{(associativity)} \\ \text{(c) } A+O=A & \text{(d) } A+(-A)=O \\ \text{(e) } c(A+B)=cA+cB & \text{(f) } (c+d)A=cA+dA \text{ (distributivity)} \\ \text{(distributivity)} & \text{(p) } c(dA)=(cd)A & \text{(h) } 1A=A \end{array}$$

Compare to Theorem 1.1.

This means that all of the concepts for vectors transfer to matrices.

E.g., manipulating matrix equations:

$$2(A+B) - 3(2B-A) = 2A + 2B - 6B + 3A = 5A - 4B.$$

We define a **linear combination** to be a matrix of the form:

$$c_1A_1 + c_2A_2 + \cdots + c_kA_k$$
.

And we can define the **span** of a set of matrices to be the set of all their linear combinations.

And we can say that the matrices A_1,A_2,\ldots,A_k are **linearly independent** if

$$c_1A_1 + c_2A_2 + \cdots + c_kA_k = O$$

has only the trivial solution $c_1 = \cdots = c_k = 0$, and are **linearly dependent** otherwise.

Our techniques for vectors also apply to answer questions such as:

Example 3.16 (a): Suppose

$$A_1=\left[egin{array}{cc} 0 & 1 \ -1 & 0 \end{array}
ight] \quad A_2=\left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight] \quad A_3=\left[egin{array}{cc} 1 & 1 \ 1 & 1 \end{array}
ight] \quad B=\left[egin{array}{cc} 1 & 4 \ 2 & 1 \end{array}
ight]$$

Is B a linear combination of A_1 , A_2 and A_3 ?

That is, are there scalars c_1 , c_2 and c_3 such that

$$c_1egin{bmatrix} 0 & 1 \ -1 & 0 \end{bmatrix} + c_2egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} + c_3egin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix} = egin{bmatrix} 1 & 4 \ 2 & 1 \end{bmatrix}?$$

Rewriting the left-hand side gives

$$\left[egin{array}{ccc} c_2+c_3 & c_1+c_3 \ -c_1+c_3 & c_2+c_3 \end{array}
ight] = \left[egin{array}{ccc} 1 & 4 \ 2 & 1 \end{array}
ight]$$

and this is equivalent to the system

$$egin{array}{ccc} c_2+c_3=1 \ c_1 & +c_3=4 \ -c_1 & +c_3=2 \ c_2+c_3=1 \end{array}$$

and we can use row reduction to determine that there is a solution, and to find it if desired: $c_1=1, c_2=-2, c_3=3$, so $A_1-2A_2+3A_3=B$.

This works exactly as if we had written the matrices as column vectors and asked

the same question.

See also Examples 3.16(b), 3.17 and 3.18 in text.

More review of Lecture 13:

Matrix multiplication

Definition: If A is $m \times n$ and B is $n \times r$, then the **product** C = AB is the $m \times r$ matrix whose i,j entry is

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}.$$

This is the dot product of the ith row of A with the jth column of B.

$$egin{array}{cccc} A & B & = & AB \ m imes n & n imes r & m imes r \end{array}$$

Powers

In general, $A^2=AA$ doesn't make sense. But if A is $n\times n$ (square), then it makes sense to define the ${f power}$

$$A^k = AA \cdots A$$
 with k factors.

We write $A^1=A$ and $A^0=I_n$.

We will see in a moment that (AB)C=A(BC) , so the expression for A^k is unambiguous. And it follows that

$$A^r A^s = A^{r+s}$$
 and $(A^r)^s = A^{rs}$

for all nonnegative integers r and s.

New material: Section 3.2: Matrix Algebra (continued)

Properties of Matrix Multiplication and Powers

This is new ground, as you can't multiply vectors.

For the most part, matrix multiplication behaves like multiplication of real numbers,

but there are several differences:

Example 3.13 on whiteboard: Powers of

$$B = egin{bmatrix} 0 & -1 \ 1 & 0 \end{bmatrix}$$

Question: Is there a nonzero matrix A such that $A^2=O$?

Yes. For example, take

$$A = egin{bmatrix} 0 & 1 \ 0 & 0 \end{bmatrix} \qquad ext{or} \qquad A = egin{bmatrix} 2 & 4 \ -1 & -2 \end{bmatrix}.$$

Challenge problems: Find a 3 imes 3 matrix A such that $A^2 \neq O$ but $A^3 = O$.

Find a 2 imes 2 matrix A such that $A
eq I_2$ but $A^3 = I_2$.

Example on whiteboard: Tell me the entries of two 2×2 matrices A and B, and let's compute AB and BA.

So we've seen:

We can have $A \neq O$ but $A^k = O$ for some k>1. We can have $B \neq \pm I$, but $B^4 = I$. We can have $AB \neq BA$.

But most expected properties do hold:

Theorem 3.3: Let A, B and C be matrices of the appropriate sizes, and let k be a scalar. Then:

- (a) A(BC) = (AB)C (associativity)
- (b) A(B+C)=AB+AC (left distributivity)
- (c) (A + B)C = AC + BC (right distributivity)
- (d) k(AB) = (kA)B = A(kB) (no cool name)
- (e) $I_m A = A = A I_n$ if A is m imes n (identity)

The text proves (b) and half of (e). (c) and the other half of (e) are the same, with right and left reversed.

Proof of (d):

$$\begin{split} (k(AB))_{ij} &= k(AB)_{ij} = k(\mathrm{row}_i(A) \cdot \mathrm{col}_j(B)) \\ &= (k \, \mathrm{row}_i(A)) \cdot \mathrm{col}_j(B) = \mathrm{row}_i(kA) \cdot \mathrm{col}_j(B) = ((kA)B)_{ij} \end{split}$$

so k(AB)=(kA)B. The other part of (d) is similar.

Proof of (a):

$$egin{split} &((AB)C)_{ij} = \sum_{k} (AB)_{ik} C_{kj} = \sum_{k} \sum_{l} A_{il} B_{lk} C_{kj} \ &= \sum_{l} \sum_{k} A_{il} B_{lk} C_{kj} = \sum_{l} A_{il} (BC)_{lj} = (A(BC))_{ij} \end{split}$$

so
$$A(BC) = (AB)C$$
.

On Friday: more from Sections 3.1 and 3.2: Transpose, symmetric matrices, partitioned matrices.

.