Math 1600A Lecture 15, Section 2, 11 Oct 2013

Announcements:

Read Section 3.3 for Wednesday. Work through recommended homework questions.

Tutorials: Quiz 3 next week will cover to the end of Section 3.2.

Solutions to the midterm are available from the course home page. Class average was 31/40 = 77.5%. Great work! But keep in mind that the material naturally gets much more difficult.

Office hour: next Wednesday, 12:30-1:30, MC103B. (No office hour on Monday.)

Help Centers: Monday-Friday 2:30-6:30 in MC 106. (But not on Monday, Oct 14.)

Partial review of Lectures 13 and 14:

Matrix multiplication

Definition: If A is $m \times n$ and B is $n \times r$, then the **product** C = AB is the $m \times r$ matrix whose i, j entry is

$$egin{aligned} c_{ij} &= a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^n a_{ik}b_{kj} \ &= \operatorname{row}_i(A) \cdot \operatorname{col}_j(B). \end{aligned}$$

Here is how I remember the shape of AB:

 $egin{array}{ccc} A & B &=& AB \ m imes n & n imes r & m imes r \end{array}$

Note: In particular, if B is a column vector in \mathbb{R}^n , then AB is a column vector in \mathbb{R}^m . So one thing a matrix A can do is *transform* column vectors into column vectors. This point of view will be important later.

For the most part, matrix multiplication behaves like multiplication of real numbers, but there are several differences:

We can have A
eq O but $A^k = O$ for some k > 1. We can have $B
eq \pm I$, but $B^4 = I$. We can have AB
eq BA.

But most expected properties **do** hold:

Theorem 3.3: Let A, B and C be matrices of the appropriate sizes, and let k be a scalar. Then:

(a) $A(BC)=(AB)C$	(associativity)
(b) $A(B+C)=AB+AC$	(left distributivity)
(c) $(A+B)C=AC+BC$	(right distributivity)
(d) $k(AB)=(kA)B=A(kB)$	(no cool name)
(e) $I_m A = A = A I_n$ if A is $m imes n$	(identity)

New material: Sections 3.1 and 3.2 continued.

Example 3.20: If A and B are square matrices of the same size, is $(A + B)^2 = A^2 + 2AB + B^2$? Using Theorem 3.3, we find:

$$egin{aligned} (A+B)^2 &= (A+B)(A+B) \ &= (A+B)A + (A+B)B \ &= A^2 + BA + AB + B^2. \end{aligned}$$

Suppose $A^2 + BA + AB + B^2 = A^2 + 2AB + B^2$. Subtracting $A^2 + AB + B^2$ from both sides gives BA = AB. So the answer is "No, unless A and B commute."

Note: Theorem 3.3 shows that a scalar matrix kI_n commutes with *every* $n \times n$ matrix A.

Partitioned Matricies

Sometimes it is natural to view a matrix is **partitioned** into **blocks**. For example:

Math 1600 Lecture 15

$$A = \begin{bmatrix} 1 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 7 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 1 & 4 & 0 \\ \hline 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 7 & 2 \end{bmatrix} = \begin{bmatrix} I & D \\ O & C \end{bmatrix}$$

This can make matrix multiplication much easier when there are blocks that are zero or an identity matrix. For example, if

$$B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \hline 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ I \end{bmatrix}$$

then

$$AB = \begin{bmatrix} I & D \\ O & C \end{bmatrix} \begin{bmatrix} O \\ I \end{bmatrix} = \begin{bmatrix} IO + DI \\ O^2 + CI \end{bmatrix} = \begin{bmatrix} D \\ C \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 3 \\ \frac{4 & 0}{1 & 7} \\ 7 & 2 \end{bmatrix}$$

You pretend that the submatrices are numbers and do matrix multiplication. As long as all of the sizes match up, this works.

See **Example 3.12** for a larger, more complicated worked example.

The most common (and important) cases are when one or both of the matrices are partitioned into rows or columns. For example, if A is $m \times n$ and B is $n \times r$, and we partition B into its columns as $B = [\vec{b}_1 \mid \vec{b}_2 \mid \cdots \mid \vec{b}_r]$, then we have:

$$AB = A[\,ec{b}_1 \mid ec{b}_2 \mid \cdots \mid ec{b}_r] = [\,Aec{b}_1 \mid Aec{b}_2 \mid \cdots \mid Aec{b}_r],$$

where we think of A and the \vec{b}_i 's as scalars. The first column of AB consists of the dot products of the rows of A with the first column \vec{b}_1 of B.

Example on whiteboard: 2×3 times 3×2 .

Note that each column of AB is a linear combination of the columns of A.

Similarly, if we partition A into rows, we can compute

$$AB = \begin{bmatrix} \underline{A_1} \\ \underline{A_2} \\ \underline{\vdots} \\ \underline{A_m} \end{bmatrix} B = \begin{bmatrix} \underline{A_1B} \\ \underline{A_2B} \\ \underline{\vdots} \\ \underline{A_mB} \end{bmatrix}$$

Same example on whiteboard.

If we partition A into rows and B into columns, we get

$$AB = \left[rac{A_1}{rac{A_2}{rac{1}{rac{A_m}{rac{A_m}{rac{1}{rac{A_m}{rac{1}{rac{1}{rac{A_m}{rac{1}{rlet}}}}}}}}}}}}}}{rc{1}{rrc{1}{rrl{1}{rrl{}}}}}}}}}}}{r{1}{rrc{1}{rrc{1}{rrc{1}{rrc{1}{rrc{1}{rrl{1}{rrl{1}{rrl{1}{rrle}{1}{rrle}}}}}{rrle}{rrle}}{rrle}}{rrle}}{rrle}{1}{rrle}{rrle}{rrle}{1}{rrle}{rrle}{rrle}{1}{rrle}{1}{}{rrle}{1}{rrle}{1}{rrle}{1}{}{{rrle}{1}{rrle}{1}{rrle}{$$

which is just the usual description of AB, where the ij entry is the dot product of the ith row of A with the jth column of B!

(Outer products and Example 3.11 not covered.)

The Transpose and Symmetric Matrices

Here's another operation on matrices, which has no analog for real numbers:

Definition: The **transpose** of an $m \times n$ matrix A is the $n \times m$ matrix A^T whose ij entry is the ji entry of A.

Example 3.14: The transposes of

$$A = egin{bmatrix} 1 & 3 & 2 \ 5 & 0 & 1 \end{bmatrix}, \qquad B = egin{bmatrix} a & b \ c & d \end{bmatrix}, \qquad ext{and} \qquad C = egin{bmatrix} 5 & -1 & 2 \end{bmatrix}$$

are

$$A^T = egin{bmatrix} 1 & 5 \ 3 & 0 \ 2 & 1 \end{bmatrix}, \qquad B^T = egin{bmatrix} a & c \ b & d \end{bmatrix}, \qquad ext{and} \qquad C^T = egin{bmatrix} 5 \ -1 \ 2 \end{bmatrix}.$$

Note that the columns and rows get interchanged.

One use of the transpose is to convert between row vectors and column vectors. In particular, we can use this to express the dot product in terms of matrix multiplication. If

$$ec{u} = egin{bmatrix} u_1 \ u_2 \ dots \ u_n \end{bmatrix} \hspace{1.5cm} ext{and} \hspace{1.5cm} ec{v} = egin{bmatrix} v_1 \ v_2 \ dots \ v_n \end{bmatrix}$$

then

$$ec{u}^Tec{v} = [u_1\,u_2\,\cdots\,u_n] egin{bmatrix} v_1\ v_2\ dots\ v_n \end{bmatrix} = u_1v_1+\cdots+u_nv_n = ec{u}\cdotec{v}$$

Properties of the transpose

Theorem 3.4: Let A and B be matrices of the appropriate sizes, and let k be a scalar. Then:

(a) $(A^T)^T = A$ (b) $(A + B)^T = A^T + B^T$ (c) $(kA)^T = k(A^T)$ (d) $(AB)^T = B^T A^T$! (e) $(A^r)^T = (A^T)^r$ for all nonnegative integers r

(a), (b) and (c) are easy to see. (d) is more of a surprise, so it is worth explaining:

Proof of (d): Suppose A is $m \times n$ and B is $n \times r$. Then both of $(AB)^T$ and B^TA^T are $r \times m$. We have to check that the entries are equal:

$$egin{aligned} & [(AB)^T]_{ij} = (AB)_{ji} = \operatorname{row}_j(A) \cdot \operatorname{col}_i(B) = \operatorname{col}_j(A^T) \cdot \operatorname{row}_i(B^T) \ & = \operatorname{row}_i(B^T) \cdot \operatorname{col}_j(A^T) = [(B^T)(A^T)]_{ij}. \end{aligned}$$

Note that (b) and (d) extend to several matrices. For example:

$$(A + B + C)^{T} = ((A + B) + C)^{T} = (A + B)^{T} + C^{T} = A^{T} + B^{T} + C^{T}$$

and

$$(ABC)^T = ((AB)C)^T = C^T (AB)^T = C^T B^T A^T$$

In particular, (e) follows: $\left(A^{r}
ight)^{T}=\left(A^{T}
ight)^{r}.$

Symmetric matrices

Definition: A square matrix A is **symmetric** if $A^T = A$. That is, $A_{ij} = A_{ji}$ for every i and j.

Example: $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ is symmetric.

There are two ways to get a symmetric matrix from a non-symmetric matrix:

1. If A is square, then $A + A^T$ is symmetric. This is because

$$(A + A^T)^T = A^T + (A^T)^T = A^T + A = A + A^T.$$

Example on whiteboard.

2. And if B is any matrix, then $B^T B$ is symmetric. This is because

$$(B^T B)^T = B^T (B^T)^T = B^T B$$

The same kind of argument shows that BB^T is symmetric.

Example on whiteboard.

Challenge problems

Find a 3 imes 3 matrix A such that $A^2
eq O$ but $A^3=O.$

Find a 2 imes 2 matrix A such that $A
eq I_2$ but $A^3=I_2.$