
Math 1600A Lecture 17, Section 2, 18 Oct 2013

Announcements:

Read Section 3.5 for Monday. We aren't covering 3.4. Work through recommended
homework questions.

Tutorials: Quiz 4 next week covers Section 3.3 and maybe some of 3.5 (I'll tell you
on Monday).

Office hour: Monday, 1:30-2:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Partial review of Lecture 16:

Definition: An inverse of an  matrix  is an  matrix  such that

If such an  exists, we say that  is invertible.

Theorem 3.6: If  is an invertible matrix, then its inverse is unique.

Because of this, we write  for the inverse of , when  is invertible. We do not

write .

Example: If , then  is the inverse of .

But the zero matrix and the matrix  are not invertible.

Theorem 3.7: If  is an invertible matrix  matrix, then the system 

has the unique solution  for any  in .

Remark: This is not in general an efficient way to solve a system.

Theorem 3.8: The matrix  is invertible if and only if .

When this is the case,

n × n A n × n A′
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=x⃗ A−1 b ⃗ b ⃗ Rn
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We call  the determinant of , and write it .
It determines whether or not  is invertible, and also shows up in the formula for

.

Properties of Invertible Matrices

Theorem 3.9: Assume  and  are invertible matrices of the same size. Then:

a.  is invertible and 

b. If  is a non-zero scalar, then  is invertible and 

c.  is invertible and 

d.  is invertible and 

e.  is invertible for all nonnegative integers  and 

To verify these, in every case you just check that the matrix shown is an inverse.

Remark: Property (c) is the most important, and generalizes to more than two

matrices, e.g. .

Remark: For  a positive integer, we define  to be . Then

, and more generally  for all integers  and .

Remark: There is no formula for . In fact,  might not be invertible,
even if  and  are.

We can use these properties to solve a matrix equation for an unknown matrix.

New material

Challenge problem:

Can you find a  matrix  and a  matrix  such that  and

?

There's no problem getting . (Find an example.)

But it's not possible to have  with the given sizes.

Suppose we did have  with  a  matrix.
Consider the homogenous system

= [ ].A−1 1
ad − bc

d

−c

−b

a

ad − bc A det A
A

A−1

A B

A−1 ( = AA−1)−1

c cA (cA =)−1 1
c

A−1

AB (AB = (socks and shoes rule))−1
B−1A−1

AT ( = (AT )−1
A−1)T

An n ( = (An)−1
A−1)n

(ABC =)−1
C −1B−1A−1

n A−n ( = (A−1)n
An)−1

= I =AnA−n A0 =ArAs Ar+s r s

(A + B)−1
A + B

A B

2 × 3 A 3 × 2 A′ A =A′ I2
A =A′ I3

A =A′ I2

A =A′ I3
A =A′ I3 A 2 × 3
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Since  and there are three variables, this system must have infinitely
many solutions. But

so there is only one solution. This is a contradiction.

More generally, unless  is square, you can't find a matrix  that makes both

 and  true.

The fundamental theorem of invertible matrices:

Very important! Will be used repeatedly, and expanded later.

Theorem 3.12: Let  be an  matrix. The following are equivalent:
a.  is invertible.

b.  has a unique solution for every .

c.  has only the trivial (zero) solution.
d. The reduced row echelon form of  is .

Proof: We have seen that (a)  (b) in Theorem 3.7 above.

We'll use our past work on solving systems to show that (b)  (c)  (d)  (b), which
will prove that (b), (c) and (d) are equivalent.

We will only partially explain why (b) implies (a).

(b)  (c): If  has a unique solution for every , then it's true when  happens to be
the zero vector.

(c)  (d): Suppose that  has only the trivial solution.
That means that the rank of  must be .
So in reduced row echelon form, every row must have a leading .
The only  matrix in reduced row echelon form with  leading 's is the identity matrix.

(d)  (b): If the reduced row echelon form of  is , then the augmented matrix 
reduces to , from which you can read off the unique solution .

A = [ ]⎡
⎣

x

y

z

⎤
⎦ 0

0

rank A ≤ 2

A = ⟹ A = ⟹ = ,x⃗ 0⃗ A′ x⃗ A′ 0⃗ x⃗ 0⃗ 

A A′

A = IA′ A = IA′

A n × n
A

A =x⃗ b ⃗ ∈b ⃗ Rn

A =x⃗ 0⃗ 
A In

⟹

⟹ ⟹ ⟹

⟹ A =x⃗ b ⃗ b ⃗ b ⃗ 

⟹ A =x⃗ 0⃗ 
A n

1
n × n n 1

⟹ A In [
[ ∣ ]In c ⃗ =x⃗ c ⃗ 
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(b)  (a) (partly): Assume  has a solution for every .
That means we can find  such that  for each .
If we let  be the matrix with the 's as columns, then

So we have found a right inverse for .
It turns out that  as well, but this is harder to see. 

Note: We have omitted (e) from the theorem, since we aren't covering elementary
matrices. They are used to prove the other half of (b)  (a).

We will see many important applications of Theorem 3.12. For now, we illustrate one
theoretical application and one computational application.

Theorem 3.13: Let  be a square matrix. If  is a square matrix such that either

 or , then  is invertible and .

Proof: If , then the system  has only the trivial solution, as we saw
in the challenge problem. So (c) is true. Therefore (a) is true, i.e.  is invertible.
Then:

This is very useful! It means you only need to check multiplication in one order to
know you have an inverse.

Gauss-Jordan method for computing the inverse

Theorem 3.14: Let  be a square matrix. If a sequence of row operations reduces

 to , then the same sequence of row operations transforms  into .

Why does this work? It's the combination of our arguments that (d)  (b) and (b)
 (a). If we row reduce  to , then . So if  is the

matrix whose columns are the 's, then . So, by Theorem 3.14, .

The trick is to notice that we can solve all of the systems at once by row
reducing . The matrix on the right will be exactly !

Example on whiteboard: Find the inverse of .

Illustrate proof of Theorem 3.14.

⟹ A =x⃗ b ⃗ b ⃗ 
, … ,x⃗ 1 x⃗ n A =x⃗ i e ⃗ i i

B = [ ∣ ⋯ ∣ ]x⃗ 1 x⃗ n x⃗ i

AB = A [ ∣ ⋯ ∣ ] = [A ∣ ⋯ ∣ A ] = [ ∣ ⋯ ∣ ] = .x⃗ 1 x⃗ n x⃗ 1 x⃗ n e ⃗ 1 e ⃗ n In

A
BA = In □

⟹

A B

AB = I BA = I A B = A−1

BA = I A =x⃗ 0⃗ 
A

B = BI = BA = I = .  (The uniqueness argument again!)A−1 A−1 A−1

A

A I I A−1

⟹
⟹ [A ∣ ]e ⃗ i [I ∣ ]c ⃗ i A =c ⃗ i e ⃗ i B

c ⃗ i AB = I B = A−1

A =x⃗ e ⃗ i
[A ∣ I ] B

A = [ ]1
3

2
7
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Example on whiteboard: Find the inverse of .

Example on whiteboard: Find the inverse of .

So now we have a general purpose method for determining whether a matrix  is
invertible, and finding the inverse:

1. Form the  matrix .

2. Use row operations to get it into reduced row echelon form.

3. If a zero row appears in the left-hand portion, then  is not invertible.

4. Otherwise,  will turn into , and the right hand portion is .

The trend continues: when given a problem to solve in linear algebra, we usually find
a way to solve it using row reduction!

We aren't covering inverse matrices over .

.

A =
⎡
⎣
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⎤
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A
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