Math 1600A Lecture 18, Section 2, 21 Oct 2013

Announcements:

Continue reading Section 3.5. We aren't covering 3.4. Work through recommended homework questions.

Tutorials: Quiz 4 this week covers Sections 3.2, 3.3 and the beginning of Section 3.5 (up to and including Example 3.41).

Office hour: today, 1:30-2:30, MC103B. Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Partial review of Section 3.3, Lectures 16 and 17:

Definition: An **inverse** of an $n \times n$ matrix A is an $n \times n$ matrix A' such that

AA' = I and A'A = I.

If such an A' exists, we say that A is **invertible**.

Theorem 3.6: If A is an invertible matrix, then its inverse is unique.

We write A^{-1} for **the** inverse of A, when A is invertible.

Theorem 3.8: The matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible if and only if $ad - bc \neq 0$.

When this is the case,

$$A^{-1} = rac{1}{ad-bc} egin{bmatrix} d & -b \ -c & a \end{bmatrix}.$$

We call ad - bc the **determinant** of A, and write it det A.

Properties of Invertible Matrices

Theorem 3.9: Assume A and B are invertible matrices of the same size. Then: a. A^{-1} is invertible and $(A^{-1})^{-1} = A$ b. If c is a non-zero scalar, then cA is invertible and $(cA)^{-1} = rac{1}{c} A^{-1}$ **c.** AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$ (socks and shoes rule)

d. A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$

e. A^n is invertible for all nonnegative integers n and $\left(A^n
ight)^{-1}=\left(A^{-1}
ight)^n$

Remark: There is no formula for $(A + B)^{-1}$. In fact, A + B might not be invertible, even if A and B are.

The fundamental theorem of invertible matrices:

Very important! Will be used repeatedly, and expanded later.

Theorem 3.12: Let A be an $n \times n$ matrix. The following are equivalent:

a. A is invertible.

b. $A\,ec x = ec b$ has a unique solution for every $ec b \in \mathbb{R}^n.$

c. $A\,ec{x}=ec{0}$ has only the trivial (zero) solution.

d. The reduced row echelon form of A is I_n .

Theorem 3.13: Let A be a square matrix. If B is a square matrix such that either AB = I or BA = I, then A is invertible and $B = A^{-1}$.

Gauss-Jordan method for computing the inverse

Theorem 3.14: Let A be a square matrix. If a sequence of row operations reduces A to I, then the **same** sequence of row operations transforms I into A^{-1} .

This gives a general purpose method for determining whether a matrix ${\cal A}$ is invertible, and finding the inverse:

- 1. Form the n imes 2n matrix $[A \mid I]$.
- 2. Use row operations to get it into reduced row echelon form.
- 3. If a zero row appears in the left-hand portion, then A is not invertible.
- 4. Otherwise, A will turn into I, and the right hand portion is A^{-1} .

New material: Section 3.5: Subspaces, basis, dimension and rank

This section contains some of the most important concepts of the course.

Subspaces

A generalization of lines and planes through the origin.

Definition: A **subspace** of \mathbb{R}^n is any collection S of vectors in \mathbb{R}^n such that:

1. The zero vector $\vec{0}$ is in S.

2. S is closed under addition: If \vec{u} and \vec{v} are in S, then $\vec{u} + \vec{v}$ is in S.

3. S is **closed under scalar multiplication**: If \vec{u} is in S and c is any scalar, then $c \vec{u}$ is in S.

Conditions (2) and (3) together are the same as saying that S is **closed under linear combinations**.

A plane ${\mathcal P}$ through the origin in ${\mathbb R}^3$ is a subspace. Applet.

Here's an algebraic argument. Suppose \vec{v}_1 and \vec{v}_2 are direction vectors for \mathcal{P} , so $\mathcal{P} = \operatorname{span}(\vec{v}_1, \vec{v}_2)$.

(1) $\vec{0}$ is in \mathcal{P} , since $\vec{0} = 0 \, \vec{v}_1 + 0 \, \vec{v}_2$. (2) If $\vec{u} = c_1 \, \vec{v}_1 + c_2 \, \vec{v}_2$ and $\vec{v} = d_1 \, \vec{v}_1 + d_2 \, \vec{v}_2$, then

$$egin{aligned} ec{u} + ec{v} &= (c_1 \, ec{v}_1 + c_2 \, ec{v}_2) + (d_1 \, ec{v}_1 + d_2 \, ec{v}_2) \ &= (c_1 + d_1) \, ec{v}_1 + (c_2 + d_2) \, ec{v}_2 \end{aligned}$$

which is in span (\vec{v}_1, \vec{v}_2) as well. (3) For any scalar c,

$$c\,ec u = c(c_1\,ec v_1 + c_2\,ec v_2) = (cc_1)\,ec v_1 + (cc_2)\,ec v_2$$

which is also in $\operatorname{span}(\vec{v}_1, \vec{v}_2)$.

On the other hand, a plane **not** through the origin is not a subspace. It of course fails (1), but the other conditions fail as well, as shown in the applet.

The **same** method as used above proves:

Theorem 3.19: Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ be vectors in \mathbb{R}^n . Then $\operatorname{span}(\vec{v}_1, \ldots, \vec{v}_k)$ is a subspace of \mathbb{R}^n .

See text. We call span $(\vec{v}_1, \ldots, \vec{v}_k)$ the **subspace spanned by** $\vec{v}_1, \ldots, \vec{v}_k$. This generalizes the idea of a line or a plane through the origin.

Example: Is the set of vectors
$$egin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 with $x=y+z$ a subspace of \mathbb{R}^3 ?

Here S is the set of all vecto

Here
$$S$$
 is the set of all vectors of the form $\begin{bmatrix} y+z\\y\\z \end{bmatrix} = y \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix} + z \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}$. That is, $S = \operatorname{span}(\begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix})$, so it is a subspace.

Alternatively, one could check the properties:

(1) This holds with y = z = 0. (2) Since $\begin{bmatrix} y_1 + z_1 \\ y_1 \\ z_1 \end{bmatrix} + \begin{bmatrix} y_2 + z_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} y_1 + z_1 + y_2 + z_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{bmatrix}$ is of the right form, this condition holds. (3) Since $c \begin{bmatrix} y+z \\ y \\ z \end{bmatrix} = \begin{bmatrix} cy+cz \\ cy \\ cz \end{bmatrix}$, this condition holds too.

This is geometrically a plane through the origin, so our previous discussion applies as well.

See Example 3.38 in the text for a similar question.

Example: Is the set of vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ with x = y + z + 1 a subspace of \mathbb{R}^3 ?

No, because it doesn't contain the zero vector. (The other properties don't hold either.)

Example: Is the set of vectors
$$egin{bmatrix} x \ y \end{bmatrix}$$
 with $y=\sin(x)$ a subspace of \mathbb{R}^2 ?

It does contain the zero vector. Let's check condition (3): Consider a vector $\begin{bmatrix} x \\ \sin(x) \end{bmatrix}$ in this set, and let c be a scalar. Then

$$cigg[x \ \sin(x) igg] = igg[cx \ c\sin(x) igg]$$

and $c\sin(x)$ is not usually equal to $\sin(cx)$. To show that this is false, we give an explicit counterexample:

$$egin{bmatrix} \pi/2 \ 1 \end{bmatrix}$$
 is in the set, but $2egin{bmatrix} \pi/2 \ 1 \end{bmatrix} = egin{bmatrix} \pi \ 2 \end{bmatrix}$ is not in the set, since $\sin(\pi) = 0
eq 2$.

Property (2) doesn't hold either.

Subspaces associated with matrices

Theorem 3.21: Let A be an $m \times n$ matrix and let N be the set of solutions of the homogeneous system $A \vec{x} = \vec{0}$. Then N is a subspace of \mathbb{R}^n .

Proof: (1) Since $A \vec{0}_n = \vec{0}_m$, the zero vector $\vec{0}_n$ is in N. (2) Let \vec{u} and \vec{v} be in N, so $A \vec{u} = \vec{0}$ and $A \vec{v} = \vec{0}$. Then

$$A(\,ec{u}+\,ec{v}) = A\,ec{u} + A\,ec{v} = ec{0} + ec{0} = ec{0}$$

so $\vec{u} + \vec{v}$ is in N.

(3) If c is a scalar and $\,ec u\,$ is in N, then

$$A(c\,ec{u})=cA\,ec{u}=c\,ec{0}=ec{0}$$

so $c\,ec{u}$ is in N. \Box

Spans and null spaces are the two main sources of subspaces.

Definition: Let A be an m imes n matrix.

1. The **row space** of A is the subspace row(A) of \mathbb{R}^n spanned by the rows of A. 2. The **column space** of A is the subspace col(A) of \mathbb{R}^m spanned by the columns of A.

3. The **null space** of A is the subspace $\operatorname{null}(A)$ of \mathbb{R}^n consisting of the solutions to the system $A \vec{x} = \vec{0}$.

Example: The column space of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is $\operatorname{span}(\begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix})$. A vector \vec{b} is a

linear combination of these columns if and only if the system $A \vec{x} = \vec{b}$ has a solution. But since A is invertible (its determinant is $4 - 6 = -2 \neq 0$), every such system has a (unique) solution. So $col(A) = \mathbb{R}^2$.

The row space of A is the same as the column space of A^T , so by a similar argument, this is all of \mathbb{R}^2 as well.

Example: The column space of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$ is the span of the two columns,

which is a subspace of \mathbb{R}^3 . Since the columns are linearly independent, this is a plane through the origin in \mathbb{R}^3 .

Determine whether $\begin{bmatrix} 2\\0\\1 \end{bmatrix}$ and $\begin{bmatrix} 2\\0\\-2 \end{bmatrix}$ are in $\operatorname{col}(A)$. (On whiteboard.)

•

We will learn methods to describe the three subspaces associated to a matrix A.