
Math 1600A Lecture 18, Section 2, 21 Oct 2013

Announcements:

Continue reading Section 3.5. We aren't covering 3.4. Work through recommended
homework questions.

Tutorials: Quiz 4 this week covers Sections 3.2, 3.3 and the beginning of Section 3.5
(up to and including Example 3.41).

Office hour: today, 1:30-2:30, MC103B.
Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Partial review of Section 3.3, Lectures 16 and 17:

Definition: An inverse of an  matrix  is an  matrix  such that

If such an  exists, we say that  is invertible.

Theorem 3.6: If  is an invertible matrix, then its inverse is unique.

We write  for the inverse of , when  is invertible.

Theorem 3.8: The matrix  is invertible if and only if .

When this is the case,

We call  the determinant of , and write it .

Properties of Invertible Matrices

Theorem 3.9: Assume  and  are invertible matrices of the same size. Then:

a.  is invertible and 

b. If  is a non-zero scalar, then  is invertible and 

c.  is invertible and 

n × n A n × n A′

A = I and A = I.A′ A′

A′ A

A

A−1 A A

A = [ ]a

c

b

d
ad − bc ≠ 0

= [ ].A−1 1
ad − bc

d

−c

−b

a

ad − bc A det A

A B

A−1 ( = AA−1)−1

c cA (cA =)−1 1
c

A−1

AB (AB = (socks and shoes rule))−1
B−1A−1
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d.  is invertible and 

e.  is invertible for all nonnegative integers  and 

Remark: There is no formula for . In fact,  might not be invertible,
even if  and  are.

The fundamental theorem of invertible matrices:

Very important! Will be used repeatedly, and expanded later.

Theorem 3.12: Let  be an  matrix. The following are equivalent:
a.  is invertible.

b.  has a unique solution for every .

c.  has only the trivial (zero) solution.
d. The reduced row echelon form of  is .

Theorem 3.13: Let  be a square matrix. If  is a square matrix such that either

 or , then  is invertible and .

Gauss-Jordan method for computing the inverse

Theorem 3.14: Let  be a square matrix. If a sequence of row operations reduces

 to , then the same sequence of row operations transforms  into .

This gives a general purpose method for determining whether a matrix  is
invertible, and finding the inverse:

1. Form the  matrix .

2. Use row operations to get it into reduced row echelon form.

3. If a zero row appears in the left-hand portion, then  is not invertible.

4. Otherwise,  will turn into , and the right hand portion is .

New material: Section 3.5: Subspaces, basis,
dimension and rank

This section contains some of the most important concepts of the course.

Subspaces

AT ( = (AT )−1
A−1)T

An n ( = (An)−1
A−1)n

(A + B)−1
A + B

A B

A n × n
A

A =x⃗ b ⃗ ∈b ⃗ Rn

A =x⃗ 0⃗ 
A In

A B

AB = I BA = I A B = A−1

A

A I I A−1

A

n × 2n [A ∣ I ]

A

A I A−1
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A generalization of lines and planes through the origin.

Definition: A subspace of  is any collection  of vectors in  such that:

1. The zero vector  is in .
2.  is closed under addition: If  and  are in , then  is in .
3.  is closed under scalar multiplication: If  is in  and  is any scalar, then

 is in .

Conditions (2) and (3) together are the same as saying that  is closed under
linear combinations.

A plane  through the origin in  is a subspace. Applet.

Here's an algebraic argument. Suppose  and  are direction vectors for , so
.

(1)  is in , since .
(2) If  and , then

which is in  as well.
(3) For any scalar ,

which is also in .

On the other hand, a plane not through the origin is not a subspace. It of course fails
(1), but the other conditions fail as well, as shown in the applet.

The same method as used above proves:

Theorem 3.19: Let  be vectors in . Then  is a
subspace of .

See text. We call  the subspace spanned by . This
generalizes the idea of a line or a plane through the origin.

Example: Is the set of vectors  with  a subspace of ?

Rn S Rn

0⃗ S
S u⃗ v ⃗ S +u⃗ v ⃗ S
S u⃗ S c

c u⃗ S

S

P R3

v ⃗ 1 v ⃗ 2 P
P = span( , )v ⃗ 1 v ⃗ 2

0⃗ P = 0 + 00⃗ v ⃗ 1 v ⃗ 2
= +u⃗ c1 v ⃗ 1 c2 v ⃗ 2 = +v ⃗ d1 v ⃗ 1 d2 v ⃗ 2

+u⃗ v ⃗ = ( + ) + ( + )c1 v ⃗ 1 c2 v ⃗ 2 d1 v ⃗ 1 d2 v ⃗ 2
= ( + ) + ( + )c1 d1 v ⃗ 1 c2 d2 v ⃗ 2

span( , )v ⃗ 1 v ⃗ 2
c

c = c( + ) = (c ) + (c )u⃗ c1 v ⃗ 1 c2 v ⃗ 2 c1 v ⃗ 1 c2 v ⃗ 2

span( , )v ⃗ 1 v ⃗ 2

, , … ,v ⃗ 1 v ⃗ 2 v ⃗ k Rn span( , … , )v ⃗ 1 v ⃗ k
Rn

span( , … , )v ⃗ 1 v ⃗ k , … ,v ⃗ 1 v ⃗ k

⎡
⎣

x

y

z

⎤
⎦ x = y + z R3
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Here  is the set of all vectors of the form . That is,

, so it is a subspace.

Alternatively, one could check the properties:
(1) This holds with .

(2) Since  is of the right form,

this condition holds.

(3) Since , this condition holds too.

This is geometrically a plane through the origin, so our previous discussion applies as
well.

See Example 3.38 in the text for a similar question.

Example: Is the set of vectors  with  a subspace of ?

No, because it doesn't contain the zero vector. (The other properties don't hold
either.)

Example: Is the set of vectors  with  a subspace of ?

It does contain the zero vector. Let's check condition (3): Consider a vector

 in this set, and let  be a scalar. Then

and  is not usually equal to .
To show that this is false, we give an explicit counterexample:

S = y + z
⎡
⎣

y + z

y

z

⎤
⎦

⎡
⎣

1
1
0

⎤
⎦

⎡
⎣

1
0
1

⎤
⎦

S = span( , )
⎡
⎣

1
1
0

⎤
⎦

⎡
⎣

1
0
1

⎤
⎦

y = z = 0

+ =
⎡
⎣

+y1 z1

y1
z1

⎤
⎦

⎡
⎣

+y2 z2

y2
z2

⎤
⎦

⎡
⎣

+ + +y1 z1 y2 z2

+y1 y2
+z1 z2

⎤
⎦

c =
⎡
⎣

y + z

y

z

⎤
⎦

⎡
⎣

cy + cz

cy

cz

⎤
⎦

⎡
⎣

x

y

z

⎤
⎦ x = y + z + 1 R3

[ ]x

y
y = sin(x) R2

[ ]x

sin(x)
c

c[ ] = [ ]x

sin(x)
cx

c sin(x)

c sin(x) sin(cx)
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 is in the set, but  is not in the set, since .

Property (2) doesn't hold either.

Subspaces associated with matrices

Theorem 3.21: Let  be an  matrix and let  be the set of solutions of the

homogeneous system . Then  is a subspace of .

Proof: (1) Since , the zero vector  is in .

(2) Let  and  be in , so  and . Then

so  is in .
(3) If  is a scalar and  is in , then

so  is in . 

Spans and null spaces are the two main sources of subspaces.

Definition: Let  be an  matrix.

1. The row space of  is the subspace  of  spanned by the rows of .
2. The column space of  is the subspace  of  spanned by the columns
of .
3. The null space of  is the subspace  of  consisting of the solutions to

the system .

Example: The column space of  is . A vector  is a

linear combination of these columns if and only if the system  has a
solution. But since  is invertible (its determinant is ), every such

system has a (unique) solution. So .

The row space of  is the same as the column space of , so by a similar

argument, this is all of  as well.

[ ]π/2
1

2[ ] = [ ]π/2
1

π

2
sin(π) = 0 ≠ 2

A m × n N

A =x⃗ 0⃗ N Rn

A =0⃗ 
n 0⃗ 

m 0⃗ 
n N

u⃗ v ⃗ N A =u⃗ 0⃗ A =v ⃗ 0⃗ 

A( + ) = A + A = + =u⃗ v ⃗ u⃗ v ⃗ 0⃗ 0⃗ 0⃗ 

+u⃗ v ⃗ N
c u⃗ N

A(c ) = cA = c =u⃗ u⃗ 0⃗ 0⃗ 

c u⃗ N □

A m × n

A row(A) Rn A
A col(A) Rm

A
A null(A) Rn

A =x⃗ 0⃗ 

A = [ ]1
3

2
4

span([ ], [ ])1
3

2
4

b ⃗ 

A =x⃗ b ⃗ 
A 4 − 6 = −2 ≠ 0

col(A) = R2

A AT

R2
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Example: The column space of  is the span of the two columns,

which is a subspace of . Since the columns are linearly independent, this is a

plane through the origin in .

Determine whether  and  are in . (On whiteboard.)

We will learn methods to describe the three subspaces associated to a matrix .

.

A =
⎡
⎣

1
3
5

2
4
6

⎤
⎦

R3

R3

⎡
⎣

2
0
1

⎤
⎦

⎡
⎣

2
0

−2

⎤
⎦ col(A)

A
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