
Math 1600A Lecture 19, Section 2, 23 Oct 2013

Announcements:

Continue reading Section 3.5, start Section 3.6. Work through recommended
homework questions.

Tutorials: Quiz 4 this week covers Sections 3.2, 3.3 and the beginning of Section 3.5
(up to and including Example 3.41).

Office hour: today, 12:30-1:30, MC103B.
Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Partial review of Lecture 18:

Subspaces

Definition: A subspace of  is any collection  of vectors in  such that:

1. The zero vector  is in .
2.  is closed under addition: If  and  are in , then  is in .
3.  is closed under scalar multiplication: If  is in  and  is any scalar, then

 is in .

Conditions (2) and (3) together are the same as saying that  is closed under
linear combinations.

Example:  is a subspace of . Also,  is a subspace of .

A line or plane through the origin in  is a subspace. Applet.

On the other hand, a plane not through the origin is not a subspace. It of course fails
(1), but the other conditions fail as well, as shown in the applet.

Theorem 3.19: Let  be vectors in . Then  is a
subspace of .

Subspaces associated with matrices

Theorem 3.21: Let  be an  matrix and let  be the set of solutions of the

homogeneous system . Then  is a subspace of .

Rn S Rn

0⃗ S
S u⃗ v ⃗ S +u⃗ v ⃗ S
S u⃗ S c

c u⃗ S

S

Rn Rn S = { }0⃗ Rn

R3

, , … ,v ⃗ 1 v ⃗ 2 v ⃗ k Rn span( , … , )v ⃗ 1 v ⃗ k
Rn

A m × n N

A =x⃗ 0⃗ N Rn
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Aside: At this point, the book states Theorem 3.22, which says that every linear
system has no solution, one solution or infinitely many solutions, and gives a proof of
this. We already know this is true, using Theorem 2.2 from Section 2.2 (see Lecture
9). The proof given here is in a sense better, since it doesn't rely on knowing
anything about row echelon form, but I won't use class time to cover it.

Spans and null spaces are the two main sources of subspaces.

Definition: Let  be an  matrix.

1. The row space of  is the subspace  of  spanned by the rows of .
2. The column space of  is the subspace  of  spanned by the columns
of .
3. The null space of  is the subspace  of  consisting of the solutions to

the system .

Example: The column space of  is , which we saw is

all of . We also saw that the row space of  is .

Example: The column space of  is the span of the two columns,

which is a subspace of . Since the columns are linearly independent, this is a

plane through the origin in .

New material

We will learn methods to describe the three subspaces associated to a matrix . But
how do we want to "describe" a subspace? That's our next topic:

Basis

We know that to describe a plane  through the origin, we can give two direction
vectors  and  which are linearly independent. Then . We know
that two vectors is always enough, and one vector will not work.

Definition: A basis for a subspace  of  is a set of vectors  such that:
1. , and
2.  are linearly independent.

Condition (2) ensures that none of the vectors is redundant, so we aren't being

A m × n

A row(A) Rn A
A col(A) Rm

A
A null(A) Rn

A =x⃗ 0⃗ 

A = [ ]1
3

2
4

span([ ], [ ])1
3

2
4

R2 A R2

A =
⎡
⎣

1
3
5

2
4
6

⎤
⎦

R3

R3

A

P
u⃗ v ⃗ P = span( , )u⃗ v ⃗ 

S Rn , … ,v ⃗ 1 v ⃗ k
S = span( , … , )v ⃗ 1 v ⃗ k

, … ,v ⃗ 1 v ⃗ k
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wasteful. Giving a basis for a subspace is a good way to "describe" it.

Example 3.42: The standard unit vectors  in  are linearly
independent and span , so they form a basis of  called the standard basis.

Example: We saw above that  and  span . They are also linearly

independent, so they are a basis for .

Note that  and  are another basis for . A subspace will in general have

many bases, but we'll see soon that they all have the same number of vectors!
(Grammar: one basis, two bases.)

Example: Let  be the plane through the origin with direction vectors  and

. Then  is a subspace of  and these two vectors are a basis for .

Example: Find a basis for .

Solution:
You can see by inspection that these vectors aren't linearly independent: the third is

the sum of the first two. So . These two vectors are

linearly independent, so they form a basis for .

In more complicated situations, there are two ways to find a basis of the span of a
set of vectors. The first way uses the following result:

Theorem 3.20: Let  and  be row equivalent matrices. Then .

Proof: Suppose  is obtained from  by performing elementary row operations.
Each of these operations expresses the new row as a linear combination of the
previous rows. So every row of  is a linear combination of the rows of . So

.

, … ,e ⃗ 1 e ⃗ n Rn

Rn Rn

[ ]1
3

[ ]2
4

R2

R2

[ ]1
0

[ ]0
1

R2

P
⎡
⎣

1
3
5

⎤
⎦

⎡
⎣

2
4
6

⎤
⎦ P R3 P

S = span( , , )
⎡
⎣

3
0
2

⎤
⎦

⎡
⎣

−2
1
1

⎤
⎦

⎡
⎣

1
1
3

⎤
⎦

S = span( , )
⎡
⎣

3
0
2

⎤
⎦

⎡
⎣

−2
1
1

⎤
⎦

S

A B row(A) = row(B)

B A

B A
row(B) ⊆ row(A)
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On the other hand, each row operation is reversible, so reversing the above
argument gives that . Therefore, 

This will be useful, because it is easy to understand the row space of a matrix in row
echelon form.

Example: Let's redo the above example. Consider the matrix

whose rows are the given vectors. So .

Row reduction produces the following matrix

which is in reduced row echelon form. By Theorem 3.20, . But the first
two rows clearly give a basis for , so another solution to the question is

 and .

Theorem: If  is a matrix in row echelon form, then the non-zero rows of  form a
basis for .

Example: Let

 is the span of the non-zero rows, since zero rows don't contribute. So we
just need to see that the non-zero rows are linearly independent. If we had

, then , by looking at the first component. So
, by looking at the second component. And so , by looking at the

fourth component. So .

row(A) ⊆ row(B) row(A) = row(B). □

A =
⎡
⎣

3
−2

1

0
1
1

2
1
3

⎤
⎦

S = row(A)

B =
⎡
⎣⎢

1
0
0

0
1
0

2/3
7/3

0

⎤
⎦⎥

S = row(B)
row(B)⎡

⎣
1
0

2/3

⎤
⎦

⎡
⎣

0
1

7/3

⎤
⎦

A A
row(A)

A = =
⎡
⎣
⎢⎢

1
0
0
0

2
5
0
0

3
6
0
0

4
7
8
0

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢⎢

a⃗ 1
a⃗ 2
a⃗ 3
a⃗ 4

⎤
⎦
⎥⎥⎥

row(A)

+ + =c1 a⃗ 1 c2 a⃗ 2 c3 a⃗ 3 0⃗ = 0c1
5 = 0c2 8 = 0c3

= = = 0c1 c2 c3
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The same argument works in general, by looking at the pivot columns, and this
proves the Theorem.

This gives rise to the row method for finding a basis for a subspace  spanned by
some vectors :

1. Form the matrix  whose rows are , so .
2. Reduce  to row echelon form .
3. The non-zero rows of  will be a basis of .

Notice that the vectors you get are usually different from the vectors you started
with. Given , one can always find a basis for  which just
omits some of the given vectors. We'll explain this next.

Suppose we form a matrix  whose columns are . A non-zero solution to

the system  is exactly a dependency relationship between the given vectors.

Also, recall that if  is row equivalent to , then  has the same solutions as

. This means that the columns of  have the same dependency
relationships as the columns of .

Example 3.47: Find a basis for the column space of

Solution: The reduced row echelon form is

Write  for the columns of  and  for the columns of . You can see immediately
that  and . So

, and these three are linearly independent since they
are standard unit vectors.

It follows that the columns of  have the same dependency relationships:
 and . Also, ,  and  must be

linearly independent. So a basis for  is given by ,  and .

S
, … ,v ⃗ 1 v ⃗ k

A , … ,v ⃗ 1 v ⃗ k S = row(A)
A B

B S = row(A) = row(B)

S = span( , … , )v ⃗ 1 v ⃗ k S

A , … ,v ⃗ 1 v ⃗ k
A =x⃗ 0⃗ 

R A R =x⃗ 0⃗ 

A =x⃗ 0⃗ R
A

A =
⎡
⎣
⎢⎢

1
2

−3
4

1
−1

2
1

3
0
1
6

1
1

−2
1

6
−1

1
3

⎤
⎦
⎥⎥

R =
⎡
⎣
⎢⎢

1
0
0
0

0
1
0
0

1
2
0
0

0
0
1
0

−1
3
4
0

⎤
⎦
⎥⎥

r ⃗ i R a⃗ i A
= + 2r ⃗ 3 r ⃗ 1 r ⃗ 2 = − + 3 + 4r ⃗ 5 r ⃗ 1 r ⃗ 2 r ⃗ 4

col(R) = span( , , )r ⃗ 1 r ⃗ 2 r ⃗ 4

A
= + 2a⃗ 3 a⃗ 1 a⃗ 2 = − + 3 + 4a⃗ 5 a⃗ 1 a⃗ 2 a⃗ 4 a⃗ 1 a⃗ 2 a⃗ 4

col(A) a⃗ 1 a⃗ 2 a⃗ 4
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Note that these are the columns corresponding to the leading 1's in !

Warning: Elementary row operations change the column space! So
. So while ,  and  are a basis for , they are not a

solution to the question asked.

We already saw that from  we can read off a basis of . Since
, a basis for  consists of the non-zero rows of .

The other kind of subspace that arises a lot is the null space of a matrix , the

subspace of solutions to the homogeneous system . We learned in Chapter 2
how to find a basis for this subspace, even though we didn't use this terminology.

Example 3.48: Find a basis for the null space of the  matrix  above.

Solution: The reduced row echelon form of  is

We see that  and  are free variables, so we let  and  and use back
substitution to find that

Therefore, the two column vectors shown form a basis for the null space.

The vectors that arise in this way will always be linearly independent, since if all 's
are , then the free variables must be zero, so the parameters must be zero.

Summary

Finding bases for ,  and :

1. Find the reduced row echelon form  of .
2. The nonzero rows form a basis for .

R

col(A) ≠ col(R) r ⃗ 1 r ⃗ 2 r ⃗ 4 col(R)

R row(A)
row(A) = row(R) row(A) R

A

A =x⃗ 0⃗ 

5 × 4 A

[A ∣ ]0⃗ 

[R ∣ ] =0⃗ 
⎡
⎣
⎢⎢⎢

1
0
0
0

0
1
0
0

1
2
0
0

0
0
1
0

−1
3
4
0

0
0
0
0

⎤
⎦
⎥⎥⎥

x3 x5 = sx3 = tx5

= = s + t (See text.)x⃗ 

⎡

⎣
⎢⎢⎢⎢

x1

x2

x3

x4

x5

⎤

⎦
⎥⎥⎥⎥

⎡

⎣
⎢⎢⎢⎢

−1
−2

1
0
0

⎤

⎦
⎥⎥⎥⎥

⎡

⎣
⎢⎢⎢⎢

1
−3

0
−4

1

⎤

⎦
⎥⎥⎥⎥

xi

0

row(A) col(A) null(A)

R A
row(A) = row(R)
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3. The columns of  that correspond to the columns of  with leading 1's form a
basis for .

4. Use back substitution to solve ; the vectors that arise are a basis for
.

You just need to do row reduction once to answer all three questions!

We have seen two ways to compute a basis of a span of a set of vectors. One is to
make them the columns of a matrix, and the other is to make them the rows. The
column method produces a basis using vectors from the original set. Both ways
require about the same amount of work.

Similarly, if asked to find a basis for , one could use the column method on

.

.

A R
col(A)

R =x⃗ 0⃗ 
null(A) = null(R)

row(A)
AT
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