
Math 1600A Lecture 20, Section 2, 25 Oct 2013

Announcements:

Read Section 3.6 for Monday. Work through recommended homework questions.

Tutorials: No tutorials next week!

We're more than halfway done the lectures! This is lecture 20 out of 37.

Office hour: Monday, 1:30-2:30, MC103B.
Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Partial review of Lectures 18 and 19:

Subspaces

Definition: A subspace of  is any collection  of vectors in  such that:

1. The zero vector  is in .
2.  is closed under addition: If  and  are in , then  is in .
3.  is closed under scalar multiplication: If  is in  and  is any scalar, then

 is in .

Basis

Definition: A basis for a subspace  of  is a set of vectors  such that:
1. , and
2.  are linearly independent.

Subspaces associated with matrices

Definition: Let  be an  matrix.

1. The row space of  is the subspace  of  spanned by the rows of .
2. The column space of  is the subspace  of  spanned by the columns
of .
3. The null space of  is the subspace  of  consisting of the solutions to

the system .

Theorem 3.20: Let  and  be row equivalent matrices. Then .

Rn S Rn

0⃗ S
S u⃗ v ⃗ S +u⃗ v ⃗ S
S u⃗ S c

c u⃗ S

S Rn , … ,v ⃗ 1 v ⃗ k
S = span( , … , )v ⃗ 1 v ⃗ k

, … ,v ⃗ 1 v ⃗ k

A m × n

A row(A) Rn A
A col(A) Rm

A
A null(A) Rn

A =x⃗ 0⃗ 

A R row(A) = row(R)
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Also, . But elementary row operations change the column space!
So .

Theorem: If  is a matrix in row echelon form, then the nonzero rows of  form a
basis for .

So if  is a row echelon form of , then a basis for  is given by the nonzero
rows of .

Now, since , the columns of  have the same dependency
relationships as the columns of .

It is easy to see that the pivot columns of  form a basis for , so the
corresponding columns of  form a basis for .

We learned in Chapter 2 how to use  to find a basis for the null space of a matrix
, even though we didn't use this terminology.

Summary

Finding bases for ,  and :

1. Find the reduced row echelon form  of .
2. The nonzero rows of  form a basis for .
3. The columns of  that correspond to the columns of  with leading 1's form a
basis for .

4. Use back substitution to solve ; the vectors that arise are a basis for
.

Row echelon form is in fact enough. Then you look at the columns with leading
nonzero entries (the pivot columns).

These methods can be used to compute a basis for a subspace  spanned by some
vectors .

The row method:

1. Form the matrix  whose rows are , so .
2. Reduce  to row echelon form .
3. The nonzero rows of  will be a basis of .

The column method:

1. Form the matrix  whose columns are , so .

null(A) = null(R)
col(A) ≠ col(R)

R R
row(R)

R A row(A)
R

null(A) = null(R) R
A

R col(R)
A col(A)

R
A

row(A) col(A) null(A)

R A
R row(A) = row(R)

A R
col(A)

R =x⃗ 0⃗ 
null(A) = null(R)

S
, … ,v ⃗ 1 v ⃗ k

A , … ,v ⃗ 1 v ⃗ k S = row(A)
A R

R S = row(A) = row(R)

A , … ,v ⃗ 1 v ⃗ k S = col(A)
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2. Reduce  to row echelon form .
3. The columns of  that correspond to the columns of  with leading entries form a
basis for .

New material

Dimension and Rank

We have seen that a subspace has many bases. Have you noticed anything about
the number of vectors in each basis?

Theorem 3.23: Let  be a subspace of . Then any two bases for  have the
same number of vectors.

Idea of proof:
Suppose that  and  were both bases for . We'll show that
this is impossible, by showing that  is linearly dependent. Since

 is a basis, we can express each  in terms of the 's:

Then

But the homogenous system

has nontrivial solutions! (Why?) Therefore, we can find nontrivial , ,  such that

A very similar argument works for the general case.

Definition: The number of vectors in a basis for a subspace  is called the
dimension of , denoted .

A R
A R

S = col(A)

S Rn S

{ , }u⃗ 1 u⃗ 2 { , , }v ⃗ 1 v ⃗ 2 v ⃗ 3 S
{ , , }v ⃗ 1 v ⃗ 2 v ⃗ 3

{ , }u⃗ 1 u⃗ 2 v ⃗ i u⃗ j

v ⃗ 1
v ⃗ 2
v ⃗ 3

= +a11 u⃗ 1 a21 u⃗ 2
= +a12 u⃗ 1 a22 u⃗ 2
= +a13 u⃗ 1 a23 u⃗ 2

=

=

+ +c1 v ⃗ 1 c2 v ⃗ 2 c3 v ⃗ 3
( + ) + ( + ) + ( + )c1 a11 u⃗ 1 a21 u⃗ 2 c2 a12 u⃗ 1 a22 u⃗ 2 c3 a13 u⃗ 1 a23 u⃗ 2

( + + ) + ( + + )c1a11 c2a12 c3a13 u⃗ 1 c1a21 c2a22 c3a23 u⃗ 2

+ +c1a11 c2a12 c3a13

+ +c1a21 c2a22 c3a23

= 0
= 0

c1 c2 c3

+ + = □c1 v ⃗ 1 c2 v ⃗ 2 c3 v ⃗ 3 0⃗ 

S
S dim S
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Example:

Example: If  is a line through the origin in  or , then 

Example: If  is a plane through the origin in , then 

Example: If , then .

Example: Let  be the matrix from last class whose reduced row echelon form is

Then: 

Note that , since we defined the rank of  to be the
number of nonzero rows in . The above theorem shows that this number doesn't
depend on how you row reduce .

We call the dimension of the null space the nullity of  and write
. This is what we called the "number of free variables" in

Chapter 2.

From the way we find the basis for ,  and , can you deduce
any relationships between their dimensions?

Theorems 3.24 and 3.26: Let  be an  matrix. Then

Very important!

Questions:

True/false: for any , . True, since

.

True/false: if  is , then the nullity of  is 3. False. We know that
 and , so  (and ).

dim = nRn

S R2 R3 dim S = 1

S R3 dim S = 2

S = span( , , )
⎡
⎣

3
0
2

⎤
⎦

⎡
⎣

−2
1
1

⎤
⎦

⎡
⎣

1
1
3

⎤
⎦ dim S = 2

A

R =
⎡
⎣
⎢⎢

1
0
0
0

0
1
0
0

1
2
0
0

0
0
1
0

−1
3
4
0

⎤
⎦
⎥⎥

dim row(A) = 3 dim col(A) = 3 dim null(A) = 2

dim row(A) = rank(A) A
R

A

A
nullity(A) = dim null(A)

row(A) col(A) null(A)

A m × n

dim row(A) = dim col(A) = rank(A) and rank(A) + nullity(A) = n.

A rank(A) = rank( )AT

rank(A) = dim row(A) = dim col( ) = rank( )AT AT

A 2 × 5 A
rank(A) ≤ 2 rank(A) + nullity(A) = 5 nullity(A) ≥ 3 ≤ 5
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True/false: if  is , then . False. ,
so ,  or .

Example: Find the nullity of

and of . Any guesses? The rows of  are linearly independent, so the rank is ,

so the nullity is . The rank of  is also , so the nullity is .

For larger matrices, you would compute the rank by row reduction.

Fundamental Theorem of Invertible Matrices, Version 2

Theorem 3.27: Let  be an  matrix. The following are equivalent:
a.  is invertible.

b.  has a unique solution for every .

c.  has only the trivial (zero) solution.
d. The reduced row echelon form of  is .
f. 
g. 
h. The columns of  are linearly independent.
i. The columns of  span .
j. The columns of  are a basis for .

Proof: We saw that (a), (b), (c) and (d) are equivalent in Theorem 3.12. The new ones are e

(d)  (f): the only square matrix in row echelon form with  nonzero rows is .

(f)  (g): follows from .

(c)  (h): easy.

(i)  (f)  (b)  (i): Explain.

(h) and (i)  (j): Clear.

In fact, since , we can add the following:

A 5 × 2 nullity(A) ≥ 3 rank(A) + nullity(A) = 2
nullity(A) = 0 1 2

M = [ ]1
8

2
9

3
10

4
11

5
12

6
13

7
14

M T M 2
7 − 2 = 5 M T 2 2 − 2 = 0

A n × n
A

A =x⃗ b ⃗ ∈b ⃗ Rn

A =x⃗ 0⃗ 
A In

rank(A) = n
nullity(A) = 0

A
A Rn

A Rn

⟺ n In

⟺ rank(A) + nullity(A) = n

⟺

⟹ ⟹ ⟹

⟺

rank(A) = rank( )AT
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k. The rows of  are linearly independent.
l. The rows of  span .
m. The rows of  are a basis for .

Example 3.52: Show that the vectors ,  and  form a basis for .

Solution: Show that matrix  with these vectors as the columns has rank 3. On
whiteboard.

Not covering Theorem 3.28.

Coordinates

Suppose  is a subspace of  with a basis , so  has dimension
. Then we can assign coordinates to vectors in , using the following theorem:

Theorem 3.29: For every vector  in , there is exactly one way to write  as a
linear combination of the vectors in :

Proof: Try to work it out yourself! It's a good exercise.

We call the coefficients  the coordinates of  with respect to , and
write

A
A Rn

A Rn

⎡
⎣

1
2
3

⎤
⎦

⎡
⎣

−1
0
1

⎤
⎦

⎡
⎣

4
9
7

⎤
⎦ R3

A

S Rn B = { , … , }v ⃗ 1 v ⃗ k S
k S

v S v
B

= + ⋯ +v ⃗ c1 v ⃗ 1 ck v ⃗ k

, , … ,c1 c2 ck v ⃗ B

[ =v ⃗ ]B

⎡
⎣
⎢⎢⎢

c1

c2

⋮
ck

⎤
⎦
⎥⎥⎥
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Example: Let  be the plane through the origin in  spanned by  and

, so  is a basis for . Let . Then

Note that while  is a vector in , it only has two coordinates with respect to .

Example: Let  be the standard basis for , and consider

. Then

We've implicitly been using the standard basis everywhere, but often in applications
it is better to use a basis suited to the problem.

.

S R3 =v ⃗ 1
⎡
⎣

1
2
3

⎤
⎦

=v ⃗ 2
⎡
⎣

4
5
6

⎤
⎦ B = { , }v ⃗ 1 v ⃗ 2 S =v ⃗ 

⎡
⎣

6
9

12

⎤
⎦

= 2 + 1 so [ = [ ]v ⃗ v ⃗ 1 v ⃗ 2 v ⃗ ]B
2
1

v ⃗ R3 B

B = { , , }e ⃗ 1 e ⃗ 2 e ⃗ 3 R3

=v ⃗ 
⎡
⎣

6
9

12

⎤
⎦

= 6 + 9 + 12 so [ =v ⃗ e ⃗ 1 e ⃗ 2 e ⃗ 3 v ⃗ ]B

⎡
⎣

6
9

12

⎤
⎦
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