
Math 1600A Lecture 22, Section 2, 30 Oct 2013

Announcements:

Read Appendix C (complex numbers) for next Monday. Work
through recommended homework questions.

Midterm 2: next Thursday evening, 7-8:30 pm. Send me an
e-mail message today if you have a conflict (even if you told me
before midterm 1). Midterm 2 covers from Section 2.3 until the end of Chapter 3
(today), but builds on the earlier material as well. A practice exam is available from
the course home page. Last name A-Q must write in NS1, R-Z in NS7. See the missed
exam section of the course web page for policies, including for illness.

Tutorials: No tutorials this week! Review in tutorials next week.

Office hour: today, 12:30-1:30, MC103B.
Help Centers: Monday-Friday 2:30-6:30 in MC 106. (But probably not Thursday or
Friday this week.)

Extra Linear Algebra Review Session: Tuesday, Nov 5, 4:30-6:30pm, MC110.

Review of last lecture: Section 3.6: Linear
Transformations

Given an  matrix , we can use  to transform a column vector in  into a
column vector in . We write:

Any rule  that assigns to each  in  a unique vector  in  is called a
transformation from  to  and is written .

Definition: A transformation  is called a linear transformation if:
1.  for all  and  in , and
2.  for all  in  and all scalars .

Theorem 3.30: Let  be an  matrix. Then  is a linear
transformation.

Theorem 3.31: Let  be a linear transformation. Then , where

m × n A A Rn

Rm

( ) = A for  in TA x⃗ x⃗ x⃗ Rn

T x⃗ Rn T ( )x⃗ Rm

Rn Rm T : →Rn Rm

T : →Rn Rm

T ( + ) = T ( ) + T ( )u⃗ v ⃗ u⃗ v ⃗ u⃗ v ⃗ Rn

T (c ) = c T ( )u⃗ u⃗ u⃗ Rn c

A m × n : →TA Rn Rm

T : →Rn Rm T = TA

A = [ T ( ) ∣ T ( ) ∣ ⋯ ∣ T ( ) ]e ⃗ 1 e ⃗ 2 e ⃗ n
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The matrix  is called the standard matrix of  and is written .

Example 3.58: Let  be rotation by an angle  counterclockwise about
the origin. Show that  is linear and find its standard matrix.

Solution: A geometric argument shows that  is linear.

To find the standard matrix, we note that

Therefore, the standard matrix of  is .

New linear transformations from old

If  and , then  makes sense for  in . The
composition of  and  is the transformation  defined by

If  and  are linear, it is easy to check that this new transformation  is
automatically linear.

Theorem 3.32: .

Example: It is geometrically clear that .

New material

Note that  is rotation by zero degrees, so . We say that  is the

identity transformation, which we write . Similarly, .

Since , we must have . Thus

 is an answer to the challenge problem from Lecture 16.

Our new point of view about matrix multiplication gives us a geometrical way to
understand it!

Inverses of Linear Transformations

A T [T ]

: →Rθ R2 R2 θ
Rθ

Rθ

[ ] = [ ] and [ ] = [ ]Rθ
1
0

cos θ

sin θ
Rθ

0
1

− sin θ

cos θ

Rθ [ ]cos θ

sin θ

− sin θ

cos θ

T : →Rm Rn S : →Rn Rp S(T ( ))x⃗ x⃗ Rm

S T S ∘ T : →Rm Rp

(S ∘ T )( ) = S(T ( )).x⃗ x⃗ 

S T S ∘ T

[S ∘ T ] = [S][T ]

∘ =Rθ Rϕ Rθ+ϕ

R0 ( ) =R0 x⃗ x⃗ R0

I : →R2 R2 = IR360

∘ ∘ = = IR120 R120 R120 R360 [ = [I] = IR120 ]3

[ ] = [ ]R120
−1/2

/23√
− /23√

−1/2
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Since , it follows that . So .
See Example 3.62 for details.

Definition: Let  and  be linear transformations from  to . Then  and  are
inverse transformations if  and . When this is the case, we say
that  and  are invertible and are inverses.

The same argument as for matrices shows that an inverse is unique when it exists, so

we write  and .

Theorem 3.33: Let  be a linear transformation. Then  is invertible if

and only if  is an invertible matrix. In this case, .

The argument is easy and is essentially what we did for .

Question: Is projection onto the -axis invertible?

Question: Is reflection in the -axis invertible?

Question: Is translation a linear transformation?

Section 3.7: Markov Chains

Example 3.64: 200 people are testing two brands
of toothpaste, Brand A and Brand B. Each month
they are allowed to switch brands. The research firm
observes the following:

Of those using Brand A in a given month, 70% continue in the following month and
30% switch to B.
Of those using Brand B in a given month, 80% continue in the following month and
20% switch to A.

This is called a Markov chain. There are definite states, and from each state there is a
transition probability for moving to another state and each time step. These
probabilities are constant and depend only on the current state.

Suppose at the start that 120 people use Brand A and 80 people use Brand B. Then, in
the next month,

and

∘ = = IR60 R−60 R0 [ ][ ] = IR60 R−60 [ ] = [R−60 R60]−1

S T Rn Rn S T
S ∘ T = I T ∘ S = I

S T

S = T −1 T = S−1

T : →Rn Rn T

[T ] [ ] = [TT −1 ]−1

R60

x

x

0.70(120) + 0.20(80) = 100 will use Brand A
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This is a matrix equation:

Write  for the transition matrix and  for the state vector after  months have
gone by. Then . So

and we see that there are 90 people using Brand A and 110 using Brand B after 2
months.

We can also work with the percentage of people using each brand. Then

 and . Vectors with non-negative

components that sum to 1 are called probability vectors

Note that  is a stochastic matrix: this means that it is square and that each column
is a probability vector.

The columns of  correspond to the current state and the rows correspond to the next
state. The entry  is the probability that you transition from state  to state  in one

time step, where we now label the states with numbers.

Multiple steps: Can we compute the probability that we
go from state  to state  in two steps? Well,

, so the matrix  computes this
transition:

So the probability of going from Brand A to Brand B after

two steps is .

More generally,  is the probability of going from

state  to state  in  steps.

Long-term behaviour: By multiplying by , you can show that the state evolves as

0.30(120) + 0.80(80) = 100 will use Brand B

[ ][ ] = [ ]0.70
0.30

0.20
0.80

120
80

100
100

P x⃗ k k
= Px⃗ k+1 x⃗ k

= P = [ ][ ] = [ ]x⃗ 2 x⃗ 1
0.70
0.30

0.20
0.80

100
100

90
110

= [ ] = [ ]x⃗ 0
120/200

80/200
0.60
0.40

P = [ ]x⃗ 0
0.50
0.50

P

P
Pij j i

j i

= P =xk+2 xk+1 P 2xk P 2

= [ ][ ] = [ ]P 2 0.7
0.3

0.2
0.8

0.7
0.3

0.2
0.8

0.55
0.45

0.30
0.70

( = 0.45 = 0.21 + 0.24P 2)21

(P k)ij

j i k

P
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follows:

with 40% of the people using Brand A in the long run. Since

once we reach this state, we don't leave. A state  with  is called a steady
state vector. We'll prove below that every Markov chain has a steady state vector!

Here's how to find it. We want to find  such that . The augmented
system is

which reduces to

The solution is

We'd like a probability vector, so  which means that . This gives

 as we found above.

Theorem: Every Markov chain has a steady state vector.

Proof: Let  be the transition matrix. We want to find a non-trivial solution to

. By the fundamental theorem of invertible matrices and the fact that

, this is equivalent to  having a
non-trivial solution. That is, finding a non-trivial  such that

[ ], [ ], [ ], [ ], [ ], [ ],0.60
0.40

0.50
0.50

0.45
0.55

0.425
0.575

0.412
0.588

0.406
0.594

[ ], [ ], [ ], [ ], [ ], …0.403
0.597

0.402
0.598

0.401
0.599

0.400
0.600

0.400
0.600

[ ][ ] = [ ]0.70
0.30

0.20
0.80

0.4
0.6

0.4
0.6

x⃗ P =x⃗ x⃗ 

x⃗ (I − P) =x⃗ 0⃗ 

[I − P ∣ ] = [ ]0⃗ 0.30
−0.30

−0.20
0.20

0
0

[ ]1
0

−2/3
0

0
0

= t, = tx1
2
3

x2

t + t = 12
3 t = 3/5

= [ ]x⃗ 0.4
0.6

P

(I − P) =x⃗ 0⃗ 

rank(I − P) = rank((I − P ))T (I − P =)T
x⃗ 0⃗ 

x⃗ 
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But since  is a stochastic matrix, we always have

So therefore  also has a (different) non-trivial solution.

Note: A Markov chain can have more than two states. Example 3.65 in the text is a
good example of a Markov chain with three states. On whiteboard.

In Chapter 4 we'll study Markov chains again.

I have time to answer questions after class, and my office hour is 12:30-1:30 in
MC103B.

= (since = I).P T x⃗ x⃗ I T

P

=P T
⎡
⎣⎢

1

⋮
1

⎤
⎦⎥

⎡
⎣⎢

1

⋮
1

⎤
⎦⎥

P =x⃗ x⃗ □
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