Math 1600A Lecture 22, Section 2, 30 Oct 2013

Announcements:

Read Appendix C (complex numbers) for next Monday. Work through recommended homework questions.

Midterm 2: next Thursday evening, 7-8:30 pm. Send me an e-mail message **today** if you have a **conflict** (even if you told me

before midterm 1). Midterm 2 covers from Section 2.3 until the end of Chapter 3 (today), but builds on the earlier material as well. A **practice exam** is available from the course home page. Last name A-Q must write in **NS1**, R-Z in **NS7**. See the missed exam section of the course web page for policies, including for illness.

Tutorials: No tutorials this week! Review in tutorials next week.

Office hour: today, 12:30-1:30, MC103B. **Help Centers:** Monday-Friday 2:30-6:30 in MC 106. (But probably not Thursday or Friday this week.)

Extra Linear Algebra Review Session: Tuesday, Nov 5, 4:30-6:30pm, MC110.

Review of last lecture: Section 3.6: Linear Transformations

Given an $m \times n$ matrix A , we can use A to transform a column vector in \mathbb{R}^n into a column vector in $\mathbb{R}^m.$ We write:

 $T_A(\vec{x}) = A\vec{x}$ for \vec{x} in \mathbb{R}^n

Any rule T that assigns to each \vec{x} in \mathbb{R}^n a unique vector $T(\,\vec{x})$ in \mathbb{R}^m is called a $\mathbf{transformation}$ from \mathbb{R}^n to \mathbb{R}^m and is written $T: \mathbb{R}^n \rightarrow \mathbb{\hat{R}}^{m}$.

 $\textbf{Definition:}~A$ transformation $T:\mathbb{R}^n\rightarrow\mathbb{R}^m$ is called a **linear transformation** if: $1.$ $T(\,\vec{u} + \vec{v}) = T(\,\vec{u}) + T(\,\vec{v})$ for all $\,\vec{u}$ and $\,\vec{v}$ in \mathbb{R}^n , and Z . $T(c\,\vec{u}) = c\,T(\,\vec{u})$ for all $\,\vec{u}$ in \mathbb{R}^n and all scalars $c.$

 $\bf{Theorem~3.30:}$ Let A be an $m\times n$ matrix. Then $T_A:\mathbb{R}^n\rightarrow\mathbb{R}^m$ is a linear transformation.

 $\bf{Theorem 3.31:}$ Let $T:\mathbb{R}^n\rightarrow\mathbb{R}^m$ be a linear transformation. Then $T=T_A$, where

 $A = [T(\vec{e}_1) | T(\vec{e}_2) | \cdots | T(\vec{e}_n)]$

The matrix A is called the $\sf{standard}$ \sf{matrix} of T and is written $[T].$

 $\textsf{\textbf{Example 3.58:}}$ Let $R_\theta: \mathbb{R}^2 \to \mathbb{R}^2$ be rotation by an angle θ counterclockwise about the origin. Show that R_θ is linear and find its standard matrix.

 ${\sf Solution}$: A geometric argument shows that R_θ is linear.

To find the standard matrix, we note that

$$
R_{\theta}\begin{bmatrix}1\\0\end{bmatrix}=\begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix}\quad\text{ and }\quad R_{\theta}\begin{bmatrix}0\\1\end{bmatrix}=\begin{bmatrix}-\sin\theta\\\cos\theta\end{bmatrix}
$$

Therefore, the standard matrix of R_{θ} is
$$
\begin{bmatrix}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{bmatrix}.
$$

New linear transformations from old

If $T:\mathbb{R}^m\to \mathbb{R}^n$ and $S:\mathbb{R}^n\to \mathbb{R}^p$, then $S(T(\,\vec{x}))$ makes sense for \vec{x} in $\mathbb{R}^m.$ The $\boldsymbol{\mathsf{composition}}$ of S and T is the transformation $\overset{\sim}{S\circ}T:\mathbb{R}^m\to\mathbb{R}^p$ defined by

$$
(S\circ T)(\vec x)=S(T(\vec x)).
$$

If S and T are linear, it is easy to check that this new transformation $S \circ T$ is automatically linear.

 $\boldsymbol{\mathsf{T}}$ heorem 3.32: $[S \circ T] = [S][T]$.

Example: It is geometrically clear that $R_\theta\circ R_\phi=R_{\theta+\phi}.$

New material

Note that R_0 is rotation by zero degrees, so $R_0(\vec{x}) = \vec{x}$. We say that R_0 is the ${\bf identity\,\,transformation}$, which we write $I:\mathbb{R}^2\rightarrow\mathbb{R}^2$. Similarly, $R_{360}=I.$

 $\textsf{Since} \; R_{120} \circ R_{120} \circ R_{120} = R_{360} = I$, we must have $\left[R_{120}\right]^3 = [I] = I$. Thus $\left[R_{120}\right]=\left[\begin{array}{cc} -1/2 & -\sqrt{3}/2 \ \sqrt{2} & 1/2 \end{array}\right]$ is an answer to the challenge problem from Lecture 16. $\sqrt{3}/2$ $-\surd 3/2$ $-1/2$

Our new point of view about matrix multiplication gives us a **geometrical** way to understand it!

Inverses of Linear Transformations

 ${\rm Since}\ R_{60}\circ R_{-60}=R_0=I$, it follows that $[R_{60}][R_{-60}]=I.$ So $[R_{-60}]=[R_{60}]^{-1}$. See Example 3.62 for details.

 $\boldsymbol{\mathsf{Definition:}}$ Let S and T be linear transformations from \mathbb{R}^n to $\mathbb{R}^n.$ Then S and T are \boldsymbol{I} **inverse transformations** if $S \circ T = I$ and $T \circ S = I.$ When this is the case, we say that S and T are **invertible** and are **inverses**.

The same argument as for matrices shows that an inverse is unique when it exists, so we write $S=T^{-1}$ and $T=S^{-1}$.

 ${\bf Theorem~3.33:}$ Let $T:\mathbb{R}^n\to \mathbb{R}^n$ be a linear transformation. Then T is invertible if and only if $[T]$ is an invertible matrix. In this case, $[T^{-1}] = [T]^{-1}$.

The argument is easy and is essentially what we did for $R_{60}.$

Question: Is projection onto the x -axis invertible?

Question: Is reflection in the x -axis invertible?

Question: Is translation a linear transformation?

Section 3.7: Markov Chains

Example 3.64: 200 people are testing two brands of toothpaste, Brand A and Brand B. Each month they are allowed to switch brands. The research firm 0.70 observes the following:

- Of those using Brand A in a given month, 70% continue in the following month and 30% switch to B.
- Of those using Brand B in a given month, 80% continue in the following month and 20% switch to A.

This is called a **Markov chain**. There are definite states, and from each state there is a **transition probability** for moving to another state and each time step. These probabilities are constant and depend only on the current state.

Suppose at the start that 120 people use Brand A and 80 people use Brand B. Then, in the next month,

 $0.70(120) + 0.20(80) = 100$ will use Brand A

and

$$
0.30(120) + 0.80(80) = 100 \quad \text{will use Brand B}
$$

This is a matrix equation:

$$
\begin{bmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{bmatrix} \begin{bmatrix} 120 \\ 80 \end{bmatrix} = \begin{bmatrix} 100 \\ 100 \end{bmatrix}
$$

Write P for the $\bf{transition}$ \bm{m} atrix and \vec{x}_k for the \bf{state} \bm{v} ector after k months have gone by. Then $\,\vec{x}_{k+1} = P \,\vec{x}_{k}$. So

$$
\vec{x}_2=P\,\vec{x}_1=\begin{bmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{bmatrix}\begin{bmatrix} 100 \\ 100 \end{bmatrix}=\begin{bmatrix} 90 \\ 110 \end{bmatrix}
$$

and we see that there are 90 people using Brand A and 110 using Brand B after 2 months.

We can also work with the percentage of people using each brand. Then

$$
\vec{x}_0 = \left[\frac{120/200}{80/200} \right] = \left[\frac{0.60}{0.40} \right] \text{ and } P\, \vec{x}_0 = \left[\frac{0.50}{0.50} \right]. \text{ Vectors with non-negative}
$$

components that sum to 1 are called **probability vectors**

Note that P is a $\sf stochastic$ matrix: this means that it is square and that each column is a probability vector.

The columns of P correspond to the current state and the rows correspond to the next state. The entry P_{ij} is the probability that you transition from state j to state i in one time step, where we now label the states with numbers.

Multiple steps: Can we compute the probability that we go from state j to state i in $\sf two$ steps? Well, $x_{k+2} = P x_{k+1} = P^2 x_k$, so the matrix P^2 computes this transition:

$$
P^2 = \left[\begin{matrix}0.7 & 0.2 \\ 0.3 & 0.8\end{matrix}\right] \left[\begin{matrix}0.7 & 0.2 \\ 0.3 & 0.8\end{matrix}\right] = \left[\begin{matrix}0.55 & 0.30 \\ 0.45 & 0.70\end{matrix}\right]
$$

So the probability of going from Brand A to Brand B after two steps is $(P^{2})_{21} = 0.45 = 0.21 + 0.24\,.$

More generally, $\left(P^k\right)_{ij}$ is the probability of going from state j to state i in k steps.

Long-term behaviour: By multiplying by P , you can show that the state evolves as

follows:

$$
\begin{bmatrix} 0.60 \\ 0.40 \end{bmatrix}, \begin{bmatrix} 0.50 \\ 0.50 \end{bmatrix}, \begin{bmatrix} 0.45 \\ 0.55 \end{bmatrix}, \begin{bmatrix} 0.425 \\ 0.575 \end{bmatrix}, \begin{bmatrix} 0.412 \\ 0.588 \end{bmatrix}, \begin{bmatrix} 0.406 \\ 0.594 \end{bmatrix}, \\ \begin{bmatrix} 0.403 \\ 0.597 \end{bmatrix}, \begin{bmatrix} 0.402 \\ 0.598 \end{bmatrix}, \begin{bmatrix} 0.401 \\ 0.599 \end{bmatrix}, \begin{bmatrix} 0.400 \\ 0.600 \end{bmatrix}, \begin{bmatrix} 0.400 \\ 0.600 \end{bmatrix}, \dots
$$

with 40% of the people using Brand A in the long run. Since

$$
\begin{bmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{bmatrix} \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix} = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix}
$$

once we reach this state, we don't leave. A state \vec{x} with $P\,\vec{x} = \vec{x}$ is called a **steady state vector**. We'll prove below that every Markov chain has a steady state vector!

Here's how to find it. We want to find \vec{x} such that $(I-P)\,\vec{x}=\vec{0}.$ The augmented system is

$$
\left[I-P \mid \vec{0}\right] = \left[\begin{array}{rr}0.30 & -0.20 & 0\\-0.30 & 0.20 & 0\end{array}\right]
$$

which reduces to

$$
\left[\begin{array}{cc|c}1 & -2/3 & 0\\0 & 0 & 0\end{array}\right]
$$

The solution is

$$
x_1=\frac{2}{3}\,t,\quad x_2=t
$$

We'd like a probability vector, so $\frac{2}{3}\,t + t = 1$ which means that $t = 3/5.$ This gives $\vec{x} = \left[\begin{array}{c} 0.4 \ 0.6 \end{array}\right]$ as we found above. 0.6

Theorem: Every Markov chain has a steady state vector.

Proof: Let P be the transition matrix. We want to find a non-trivial solution to $(I-P)$ $\vec{x}=\vec{0}$. By the fundamental theorem of invertible matrices and the fact that $\mathrm{rank}(I-P)=\mathrm{rank}((I-P)^{T})$, this is equivalent to $(I-P)^{T}\,\vec{x}=\vec{0}$ having a non-trivial solution. That is, finding a non-trivial \vec{x} such that

$$
P^T\,\vec{x}=\,\vec{x}\quad(\text{since }I^T=I).
$$

But since P is a stochastic matrix, we always have

$$
P^T \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}
$$

So therefore $P\,\vec{x}=\,\vec{x}$ also has a (different) non-trivial solution. $\hskip10mm \square$

Note: A Markov chain can have more than two states. Example 3.65 in the text is a good example of a Markov chain with three states. On whiteboard.

In Chapter 4 we'll study Markov chains again.

I have time to answer questions after class, and my office hour is 12:30-1:30 in MC103B.