Math 1600 Lecture 24

Math 1600A Lecture 24, Section 2, 6 Nov 2013

Announcements:

Read Section 4.2 for Friday. Work through recommended homework questions.

Midterm 2: this Thursday evening, 7-8:30 pm. People with a conflict should already
have let me know, and should know when the make-up is. Midterm 2 covers from
Section 2.3 until the end of Chapter 3 (Wednesday), but builds on the earlier material
as well. A practice exam is available from the course home page. Last name A-Q must
write in NS1, R-Z in NS7. See the missed exam section of the course web page for
policies, including for illness.

Tutorials: No quiz; focused on midterm review.

Office hour: today, 12:30-1:30, MC103B.
Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Exercises for Appendix C are here, and there are solutions.

New Material: Section 4.1: Eigenvalues and
eigenvectors

We saw when studying Markov chains that it was important to find solutions to the
system AZ = Z, where A is a square matrix. We did this by solving (I — A) Z = 0.

More generally, a central problem in linear algebra is to find 2 such that A% is a scalar
multiple of Z.

Definition: Let A be an n X n matrix. A scalar X\ (lambda) is called an eigenvalue of
A if there is a nonzero vector 7 such that AZ = \Z. Such a vector Z is called an
eigenvector of A corresponding to \.

We showed that A = 1 is an eigenvalue of every stochastic matrix A.

Example: Since

2 302

we see that 2 is an eigenvalue of [1 2

9 _2] with eigenvector [i]
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Example 4.2: Show that § is an eigenvalue of A = [4

] and determine all
eigenvectors corresponding to this eigenvalue.

Solution: We are looking for nonzero solutions to A2 = 5 2. This is the same as
(A —5I)Z = 0, so we compute the coefficient matrix:

_ {1 21 |5 Of_ —4 2
A_5I_[4 3] [0 5]_[ 4 —2]
The columns are linearly dependent, so the null space of A — 51 is nonzero. So

A Z = 572 has a nontrivial solution, which is what it means for 5 to be an eigenvalue.

To find the eigenvectors, we compute the null space of A — 51:

[ 2a 200 [1 —1/2]0
A—5I|0]=
[A=5I10] 4—2‘0 %[0 0‘0]
The solutions are of the form t{f] = t[liz . So the eigenvectors for the

1/2
eigenvalue b are the nonzero multiples of { { ] :

Definition: Let A be an n X n matrix and let X be an eigenvalue of A. The collection
of all eigenvectors corresponding to A, together with the zero vector, is a subspace
called the eigenspace of \ and is denoted E. In other words,

E) = null(A — \I).

In the above Example, E5 = spa.n{ [1{2] }

2

Example: Give an eigenvalue of the matrix 4 = [0 5

Since AZ = 27 for every Z, 2 is an eigenvalue, and is the only eigenvalue. In this
case, By = RZ.
Example: If 0 is an eigenvalue of A, what is another name for Ey?

Ej is the null space of A — 0 = A. Thatis, Ey = null(4).

Applet: This java applet lets you search for eigenvectors. (Instructions.)

] and compute its eigenspace.
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Try it with:

R

(If that doesn't work, here is another applet.)

B

See Pages 268 and 269 of the text for another geometric way to understand
eigenvalues and eigenvectors (Figure 4.7).

Read Example 4.3 in the text fora 3 x 3 example.

Finding eigenvalues

Given a specific number A, we now know how to check whether )\ is an eigenvalue: we
check whether A — AI has a nontrivial null space. And we can find the eigenvectors by
finding the null space.

We also have a geometric way to find all eigenvalues ), at least in the 2 X 2 case. Is
there an algebraic way to check all \ at once?

By the fundamental theorem of invertible matrices, A — AI has a nontrivial null space
if and only if it is not invertible. For 2 X 2 matrices, we can check invertibility using the
determinant!

Example: Find all eigenvalues of A = [; g] .
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Solution: We need to find all A such that det(A — A\I) = 0.

1—A 2

det(A—)\I)zdet{ 9 _9_1

]:(1—,\)(—2—A)—4:A2+A

so we need to solve the quadratic equation A2 4+ X — 6 = 0. This can be factored as
(A—2)(A+3) =0,andso A = 2 or A = —3, the same as we saw above and with the
applet.

We could proceed to find the eigenvectors for these eigenvalues, by solving
(A-2)2 = 0 and (A+3)2 = 0. Do this on whiteboard, if time.

Appendix D provides review of polynomials and their solutions.
See also Example 4.5 in text.

The eigenvalues depend on whether you let your vectors have coefficients in R or in C:

0 -1

Example 4.7: Find the eigenvalues of A = [1 0

] (a) over R and (b) over C.

Solution: We must solve

-2 -1

0 =det(A— AI) :det[ L

] =% 4 1.
(a) Over R, there are no solutions, so A has no real eigenvalues. (See the applet above,
with its default matrix.)

(b) Over C, the solutions are A = 7 and A = —1. The eigenvectors for A = ¢ are the

nonzero multiples of [1] since

0 1| _ [-1] _ ; 1
1 0|1 ) 1|
So now we know how to handle the 2 X 2 case. To handle larger matrices, we need to

learn about their determinants, which is Section 4.2.

We won't discuss eigenvectors and eigenvalues for matrices over Z,,.



