Math 1600A Lecture 25, Section 2, 8 Nov 2013

Announcements:

Continue **reading** Section 4.2 for Monday. Work through recommended homework questions.

Tutorials: No quiz next week, just review. **Office hour:** Monday, 1:30-2:30, MC103B. **Help Centers:** Monday-Friday 2:30-6:30 in MC 106.

Brief summary of Section 4.1: Eigenvalues and eigenvectors

Definition: Let A be an $n \times n$ matrix. A scalar λ (lambda) is called an eigenvalue of A if there is a nonzero vector \vec{x} such that $A\,\vec{x}=\lambda\,\vec{x}.$ Such a vector \vec{x} is called an eigenvector of A corresponding to . *λ*

Question: Why do we only consider square matrices here?

Example: Since

$$
\begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix},
$$

we see that 2 is an eigenvalue of $\begin{bmatrix} 1 & 2 \ 2 & -2 \end{bmatrix}$ with eigenvector $\begin{bmatrix} 2 \ 1 \end{bmatrix}$. $\begin{bmatrix} 2 \ -2 \end{bmatrix}$ with eigenvector $\begin{bmatrix} 2 \ 1 \end{bmatrix}$

In general, the eigenvectors for a given eigenvalue λ are the nonzero solutions to $(A-\lambda I)\,\vec{x}=\vec{0}.$

 ${\bf Definition:}$ Let A be an $n \times n$ matrix and let λ be an eigenvalue of $A.$ The collection of all eigenvectors α corresponding to λ , together with the zero vector, is a subspace called the **eigenspace** of λ and is denoted $E_\lambda.$ In other words,

 $E_{\lambda} = \text{null}(A - \lambda I).$

We worked out many examples, and used an applet to understand the geometry.

Finding eigenvalues

Given a specific number λ , we know how to check whether λ is an eigenvalue: we check whether $A-\lambda I$ has a nontrivial null space. (And we can find the eigenvectors by finding the null space.)

By the fundamental theorem of invertible matrices, $A-\lambda I$ has a nontrivial null space if and only if it is not invertible. For 2×2 matrices, we can check invertibility using the determinant!

Example: Find all eigenvalues of $A = \begin{bmatrix} 1 & 2 \ 2 & -2 \end{bmatrix}$. 2 -2

Solution: We need to find all λ such that $\det(A - \lambda I) = 0.$

$$
\det(A-\lambda I)=\det\begin{bmatrix}1-\lambda & 2 \\ 2 & -2-\lambda\end{bmatrix}=(1-\lambda)(-2-\lambda)-4=\lambda^2+\lambda-6,
$$

so we need to solve the quadratic equation $\lambda^2+\lambda-6=0.$ This can be factored as $(\lambda-2)(\lambda+3)=0$,

and so $\lambda=2$ or $\lambda=-3$ are the eigenvalues.

So now we know how to handle the 2×2 case. To handle larger matrices, we need to learn about their determinants, which is Section 4.2.

New material: Section 4.2: Determinants

Recall that we defined the determinant of a 2×2 matrix $A = \begin{bmatrix} a & b \ c & d \end{bmatrix}$ by $\det A = ad - bc.$ We also write this as $\begin{bmatrix} b \ d \end{bmatrix}$ by $\det A = ad - bc$

$$
\det A = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.
$$

For a 3×3 matrix A , we define

 $\det A = |a_{21} \quad a_{22} \quad a_{23}| = a_{11} \, | \, \begin{vmatrix} \omega_{22} & \omega_{23} \\ \alpha & \omega_{23} \end{vmatrix} - a_{12} \, | \, \begin{vmatrix} \omega_{21} & \omega_{23} \\ \alpha & \omega_{23} \end{vmatrix} +$ ∣ ∣ ∣ ∣ *a*¹¹ *a*²¹ *a*³¹ *a*¹² *a*²² *a*³² *a*¹³ *a*²³ *a*³³ ∣ ∣ $\Big|=a_{11}$ $\left|\frac{a_{22}}{a_{32}}\right|$ *a*³² *a*²³ *a*³³ ∣ $\vert -a_{12}\vert$ $\begin{vmatrix} a_{21} \ a_{31} \end{vmatrix}$ *a*³¹ *a*²³ *a*³³ ∣ $|+ a_{13}|$ $\left|\frac{a_{21}}{a_{31}}\right|$ *a*³¹ *a*²² *a*³² ∣ ∣ ∣

If we write A_{ij} for the matrix obtained from A by deleting the i th row and the j th column, then this can be written

$$
\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + a_{13} \det A_{13} = \sum_{j=1}^3 (-1)^{1+j} \, a_{1j} \det A_{1j}.
$$

We call $\det A_{ij}$ the (i,j) -minor of $A.$

Example: On whiteboard.

Example 4.9 in the book shows another method, that doesn't generalize to larger matrices.

Determinants of $n \times n$ matrices

 ${\bf Definition:}$ Let $A=[a_{ij}]$ be an $n\times n$ matrix. Then the ${\bf determinant}$ of A is the scalar

$$
\begin{aligned} \det A&=|A|=a_{11}\det A_{11}-a_{12}\det A_{12}+\cdots+(-1)^{1+n}a_{1n}\det A_{1n}\\ &=\sum_{j=1}^n(-1)^{1+j}\,a_{1j}\det A_{1j}. \end{aligned}
$$

This is a recursive definition!

Example: $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$, on whiteboard. ∣ ∣ ∣ ∣ ∣ 2 3 1 2 0 1 0 0 1 0 2 4 0 0 3 5 ∣ ∣ ∣ ∣ ∣

The computation can be very long if there aren't many zeros! We'll learn some better methods.

Note that if we define the determinant of a 1×1 matrix $A=[a]$ to be a , then the general definition works in the 2×2 case as well. So, in this context, $|a|=a$ (not the absolute value!)

It will make the notation simpler if we define the (i, j) -cofactor of A to be

$$
C_{ij} = (-1)^{i+j} \det A_{ij}.
$$

Then the definition above says

$$
\det A = \sum_{j=1}^n \, a_{1j} C_{1j}.
$$

This is called the **cofactor expansion along the first row**. It turns out that any row or column works!

Theorem 4.1 (The Laplace Expansion Theorem): Let A be any $n \times n$ matrix. Then for each i we have

$$
\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in} = \sum_{j=1}^n a_{ij}C_{ij}
$$

(cofactor expansion along the ith row). And for each j we have

$$
\det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \cdots + a_{nj}C_{nj} = \sum_{i=1}^n a_{ij}C_{ij}
$$

(cofactor expansion along the j th column).

The book proves this result at the end of this section, but we won't cover the proof.

The signs in the cofactor expansion form a checkerboard pattern:

$$
\begin{bmatrix} + & - & + & - & \cdots \\ - & + & - & + & \cdots \\ + & - & + & - & \cdots \\ - & + & - & + & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}
$$

Example: Redo the previous 4×4 example, saving work by expanding along the second column. On whiteboard. Note that the $+-$ pattern for the 3×3 determine is not from the original matrix.

Example: $A \times 4$ triangular matrix, on whiteboard.

A **triangular** matrix is a square matrix that is all zero below the diagonal or above the diagonal.

Theorem 4.2: If A is triangular, then $\det A$ is the product of the diagonal entries.

Better methods

Laplace Expansion is convenient when there are appropriately placed zeros in the matrix, but it is not good in general. It produces $n!$ different terms (explain). A supercomputer would require 10^{30} times the age of the universe just to compute a 50×50 determinant in this way. And that's a puny determinant for real-world applications.

So how do we do better? Like always, we turn to row reduction! These properties will be what we need:

Theorem 4.3: Let A be a square matrix.

a. If A has a zero row, the $\det A = 0.$

b. If B is obtained from A by interchanging two rows, then $\det B = -\det A$.

c. If A has two identical rows, then $\det A = 0.$

d. If B is obtained from A by multiplying a row of A by k , then $\det B = k \det A$.

e. If A , B and C are identical in all rows except the i th row, and the i th row of C is the sum of the i th rows of A and B , then $\det C = \det A + \det B$.

f. If B is obtained from A by adding a multiple of one row to another, then $\det B = \det A$.

All of the above statements are true with rows replaced by columns.

Explain verbally, making use of:

$$
\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in} = \sum_{j=1}^n a_{ij}C_{ij}
$$

The following will help explain how (f) follows from (d) and (e):

$$
A = \begin{bmatrix} \vec{r}_1 \\ \vec{r}_2 \\ \vec{r}_3 \\ \vec{r}_4 \end{bmatrix}\!, \quad B = \begin{bmatrix} \vec{r}_1 \\ 5\,\vec{r}_4 \\ \vec{r}_3 \\ \vec{r}_4 \end{bmatrix}\!, \quad B' = \begin{bmatrix} \vec{r}_1 \\ \vec{r}_4 \\ \vec{r}_3 \\ \vec{r}_4 \end{bmatrix}\!, \quad C = \begin{bmatrix} \vec{r}_1 \\ \vec{r}_2 + 5\,\vec{r}_4 \\ \vec{r}_3 \\ \vec{r}_4 \end{bmatrix}\!.
$$

 $\det C = \det A + \det B = \det A + 5 \det B' = \det A + 5(0) = \det A$.

The bold statements are the ones that are useful for understanding how row operations change the determinant.