
Math 1600A Lecture 26, Section 2, 11 Nov 2013

Announcements:

Today we finish 4.2. Read Section 4.3 for Wednesday.
Work through recommended homework questions.

Tutorials: No quiz this week, just review.
Office hour: Monday, 1:30-2:30, MC103B.
Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Summary of Section 4.2: Determinants

For an  matrix , write  for the matrix obtained from  by deleting the th

row and the th column. Then  is called the -minor of , and

is called the -cofactor of . (Despite what I said in class, the above is correct.)

Definition: Let  be an  matrix. Then the determinant of  is the

scalar

We define the determinant of a  matrix  to be .

This is a recursive definition!

For :

as we defined earlier.

For a  matrix , we have

n × n A Aij A i
j detAij (i, j) A

= (−1 det .Cij )i+j
Aij

(i, j) A

A = [ ]aij n × n A

det A = |A| = + + ⋯ +a11C11 a12C12 a1nC1n

= = (−1 det .∑
j=1

n

a1jC1j ∑
j=1

n

)1+j
a1j A1j

1 × 1 [a] a

n = 2

det A = |A| =
∣
∣
∣ a11

a21

a12

a22

∣
∣
∣

= | | − | | = − ,a11 a22 a12 a21 a11a22 a12a21

3 × 3 A
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The computation can be very long if there aren't many zeros! We'll learn some better
methods.

The above is called the cofactor expansion along the first row. It turns out that any
row or column works!

Theorem 4.1 (The Laplace Expansion Theorem): Let  be any  matrix. Then
for each  we have

(cofactor expansion along the th row). And for each  we have

(cofactor expansion along the th column).

The book proves this result at the end of this section, but we won't cover the proof.

The signs in the cofactor expansion form a checkerboard pattern:

A triangular matrix is a square matrix that is all zero below the diagonal or above the
diagonal.

Theorem 4.2: If  is triangular, then  is the product of the diagonal entries.

Better methods

det A =
∣

∣

∣
∣

a11

a21

a31

a12

a22

a32

a13

a23

a33

∣

∣

∣
∣ = + +a11C11 a12C12 a13C13

= − +a11
∣
∣
∣ a22

a32

a23

a33

∣
∣
∣ a12

∣
∣
∣ a21

a31

a23

a33

∣
∣
∣ a13

∣
∣
∣ a21

a31

a22

a32

∣
∣
∣

A n × n
i

det A = + + ⋯ + =ai1Ci1 ai2Ci2 ainCin ∑
j=1

n

aijCij

i j

det A = + + ⋯ + =a1jC1j a2jC2j anjCnj ∑
i=1

n

aijCij

j

⎡

⎣
⎢⎢⎢⎢⎢⎢

+
−
+
−

⋮

−
+
−
+

⋮

+
−
+
−

⋮

−
+
−
+

⋮

⋯
⋯
⋯
⋯

⋱

⎤

⎦
⎥⎥⎥⎥⎥⎥

A det A
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Laplace Expansion is convenient when there are appropriately placed zeros in the
matrix, but it is not good in general. It produces  different terms, which is waaaaay
too slow for large matrices.

So how do we do better? Like always, we turn to row reduction! These properties will be
what we need:

Theorem 4.3: Let  be a square matrix.

a. If  has a zero row, the .
b. If  is obtained from  by interchanging two rows, then .
c. If  has two identical rows, then .
d. If  is obtained from  by multiplying a row of  by , then .
e. If ,  and  are identical in all rows except the th row, and the th row of  is the
sum of the th rows of  and , then .
f. If  is obtained from  by adding a multiple of one row to another, then

.

All of the above statements are true with rows replaced by columns.

The bold statements are the ones that are useful for understanding how row operations
change the determinant.

New material: Section 4.2: Determinants (cont)

Example: Use row operations to compute  by reducing to triangular form, where

. On whiteboard.

Example: Same for .

Row reduction of an  matrix requires roughly  operations in general, which is
much less than  factorial. Note that you can even mix and match row and column
operations, if it simplifies the work.

Determinants and Invertibility

Theorem 4.6: A square matrix  is invertible if and only if .

n!

A

A det A = 0
B A det B = − det A
A det A = 0
B A A k det B = k det A
A B C i i C

i A B det C = det A + det B
B A

det B = det A

det A

A =
⎡
⎣
⎢⎢

2
1
2
1

4
4
2
2

6
1

12
3

8
2
8
9

⎤
⎦
⎥⎥

A =
⎡
⎣

2
−4

2

3
−6

5

−1
2
3

⎤
⎦

n × n n3

n

A det A ≠ 0
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The book proves this using elementary matrices, which we aren't covering, but here is
a simpler proof.

Proof: If  is invertible, then by the Fundamental Theorem, the reduced row echelon
form of  is . Each elementary row operation either leaves the determinant the same
or multiplies by a non-zero number. Since , we must also have

.

On the other hand, if  is not invertible, then the reduced row echelon form  has a
zero row, so . Again,  for some , so  too. 

Example: The  matrix above is invertible, but the  is not. The computations
illustrate the proof of the theorem.

Determinants and Matrix Operations

Theorems 4.7 to 4.10: Let  by an  matrix. Then:
4.7:  
4.8:  

4.9:  , if  is invertible.

4.10:  

Note: There is no formula for .

Proofs:
4.7: Follows from Theorem 4.3(d), since each row is multiplied by .
4.8: The book uses elementary matrices to prove this, which we haven't covered, so
there is no easy way for us to prove this. I'll do an example below.

4.9: This follows from 4.8. Since  we have

, so .
4.10: Computing  using expansion along the first row produces the same thing as

computing  by expanding along the first column. (Proof by induction on the
size of the matrix.) 

Example:: Illustrate all four statements with  matrices, on whiteboard.

Cramer's Rule

Cramer's Rule is a formula for solving a system of  equations in  unknowns. It is not
efficient computationally, but is useful theoretically.

Notation: If  is an  matrix and , we write  for the matrix obtained

from  by replacing the th column with the vector :

A
A I

det I = 1 ≠ 0
det A ≠ 0

A R
det R = 0 det A = k det R k det A = 0 □

4 × 4 3 × 3

A n × n
det(kA) = det Akn

det(AB) = (det A)(det B)
det( ) =A−1 1

det A
A

det( ) = det AAT

det(A + B)

k

det(A ) = det(I) = 1A−1

(det A)(det ) = 1A−1 det = 1/ det AA−1

det A

det( )AT

□

2 × 2

n n

A n × n ∈b ⃗ Rn ( )Ai b ⃗ 

A i b ⃗ 
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Theorem: Let  be an invertible  matrix and let  be in . Then the unique

solution  of the system  has components

Example 4.16: On whiteboard: Use Cramer's rule to solve

Proof: Suppose . Consider . Then

So

But

by expanding along th row. So the claim follows.

Note: This is not an efficient method. For an  system, you have to compute
 determinants. But the work in computing  determinant is enough to solve the

system by our usual method.

Matrix Inverse using the Adjoint

The matrix

( ) = [ ⋯ ⋯ ]Ai b ⃗ a⃗ 1 a⃗ i−1 b ⃗ a⃗ i+1 a⃗ n

A n × n b ⃗ Rn

x⃗ A =x⃗ b ⃗ 

= , for i = 1, … , nxi
det( ( ))Ai b ⃗ 

det A

+ 2x1 x2

− + 4x1 x2

= 2
= 1

A =x⃗ b ⃗ ( ) = [ ⋯ ⋯ ]Ii x⃗ e ⃗ 1 x⃗ e ⃗ n

A ( )Ii x⃗ = A [ ⋯ ⋯ ] = [A ⋯ A ⋯ A ]e ⃗ 1 x⃗ e ⃗ n e ⃗ 1 x⃗ e ⃗ n

= [ ⋯ ⋯ ] = ( ).a⃗ 1 b ⃗ a⃗ n Ai b ⃗ 

(det A)(det ( )) = det(A ( )) = det( ( )).Ii x⃗ Ii x⃗ Ai b ⃗ 

det ( ) = =Ii x⃗ 

∣

∣

∣
∣
∣
∣
∣
∣

1

⋮
0

⋮
0

⋯

⋱
⋯

⋯

x1

⋮
xi

⋮
x1

⋯

⋯

⋱
⋯

0

⋮
0

⋮
1

∣

∣

∣
∣
∣
∣
∣
∣

xi

i □

n × n
n + 1 1
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is called the adjoint of .

Theorem: If  is an invertible matrix, then

I will explain this next lecture.

adjA := [ ] = [ =Cji Cij ]T

⎡
⎣
⎢⎢⎢⎢

C11

C12

⋮
C1n

C21

C22

⋮
C2n

⋯
⋯

⋱
⋯

Cn1

Cn2

⋮
Cnn

⎤
⎦
⎥⎥⎥⎥

A

A

= adjAA−1 1
det A
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