Math 1600A Lecture 27, Section 2, 13 Nov 2013

Announcements:

Today we finish 4.2 and start 4.3. Continue **reading** Section 4.3 for Friday and also read **Appendix D** on polynomials (**self-study**). Work through recommended homework questions.

Tutorials: No quiz this week, just review. **Office hour:** Wednesday, 12:30-1:30, MC103B. **Help Centers:** Monday-Friday 2:30-6:30 in MC 106.

Midterm 2 Solutions are available from the course home page. I don't know the class average yet.

Review Questions

 $\bm{\mathsf{Question:}}$ True/false: If A is not invertible, then AB is not invertible.

 $\boldsymbol{\mathsf{Question:}}$ True/false: $\det(A + B) = \det A + \det B.$

 $\bm{\mathsf{Question:}}\ \det(3I_2) = 3^2\ \det I_2 = 3^2 = 9$

Question:
$$
\begin{vmatrix} 0 & 0 & a \\ 0 & b & c \\ d & e & f \end{vmatrix} = - \begin{vmatrix} d & e & f \\ 0 & b & c \\ 0 & 0 & a \end{vmatrix} = -abd \text{ (not triangular!)}
$$

Partial review of last class: Cramer's Rule

 ${\bf Notation:}$ If A is an $n \times n$ matrix and $\vec{b} \in {\mathbb R}^n$, we write $A_i(\,\vec{b})$ for the matrix obtained from A by replacing the i th column with the vector \vec{b} :

$$
A_i(\vec{b})=[\,\vec{a}_1\cdots\,\vec{a}_{i-1}\,\vec{b}\,\,\vec{a}_{i+1}\cdots\,\vec{a}_n\,]
$$

 $\bf{Theorem:}$ Let A be an invertible $n\times n$ matrix and let \vec{b} be in $\mathbb{R}^n.$ Then the unique solution \vec{x} of the system $A\,\vec{x}=\,\vec{b}$ has components

$$
x_i = \frac{\det(A_i(\,\vec{b}))}{\det A}\,, \quad \text{for } i=1,\ldots,n
$$

New material: Matrix Inverse using the Adjoint

Suppose A is invertible. We'll use Cramer's rule to find a formula for $X = A^{-1}$. We know that $AX = I$, so the jth column of X satisfies $A\,\vec{x}_j = \vec{e}_j$. By Cramer's Rule,

$$
x_{ij} = \frac{\det(A_i(\,\vec{e}_{\,j}))}{\det A}
$$

By expanding along the *i*th column, we see that

$$
\det(A_i(\,\vec{e}_{j}))=C_{ji}
$$

So

$$
x_{ij} = \frac{1}{\det A}\,C_{ji},\quad\text{i.e.,}\quad X = \frac{1}{\det A}\left[C_{ij}\right]^T
$$

The matrix

$$
\text{adj}A := \left[C_{ji}\right] = \left[C_{ij}\right]^T = \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}
$$

is called the **adjoint** of A .

Theorem: If \vec{A} is an invertible matrix, then

$$
A^{-1} = \frac{1}{\det A} \operatorname{adj} A
$$

Example: If $A = \begin{bmatrix} a & b \ c & d \end{bmatrix}$, then the cofactors are *c b d* Γ ¹ $det[a]$

$$
\begin{aligned} C_{11} = +\det[d] = +d \qquad C_{12} = -\det[c] = -c \\ C_{21} = -\det[b] = -b \qquad C_{22} = +\det[a] = +a \end{aligned}
$$

so the adjoint matrix is

$$
\text{adj}A = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
$$

and

$$
A^{-1} = \frac{1}{\det A} \operatorname{adj} \! A = \frac{1}{\det A} \left[\begin{matrix} d & -b \\ -c & a \end{matrix} \right]
$$

as we saw before.

See Example 4.17 in the text for a 3×3 example. Again, this is not generally a good computational approach. It's importance is theoretical.

Section 4.3: Eigenvalues and Eigenvectors

Recall from Section 4.1:

Definition: Let A be an $n \times n$ matrix. A scalar λ (lambda) is called an **eigenvalue** of A if there is a nonzero vector \vec{x} such that $A\,\vec{x}=\lambda\,\vec{x}$. Such a vector $\,\vec{x}$ is called an **eigenvector** of A corresponding to λ .

The eigenvectors for a given eigenvalue λ are the $\boldsymbol{\mathsf{nonzero}}$ solutions to $(A - \lambda I) \vec{x} = \vec{0}.$

Definition: The collection of **all** solutions to $(A - \lambda I)\,\vec{x} = \vec{0}$ is a subspace called the $\boldsymbol{\mathsf{eigenspace}}$ of λ and is denoted $E_\lambda.$ In other words,

 $E_{\lambda} = \text{null}(A - \lambda I).$

It consists of the eigenvectors plus the zero vector.

By the fundamental theorem of invertible matrices, $A-\lambda I$ has a nontrivial null space if and only if it is not invertible, and we now know that this is the case if and only if $\det(A-\lambda I)=0.$

The expression $\det(A - \lambda I)$ is always a polynomial in $\lambda.$ For example, when

 $A = \begin{bmatrix} a & b \ c & d \end{bmatrix}$ *c b d*

$$
\det(A-\lambda I)=\left|\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right|=(a-\lambda)(d-\lambda)-bc=\lambda^2-(a+d)\lambda+(ad-b)
$$

In A is 3×3 , then

$$
\det(A-\lambda I)=(a_{11}-\lambda)\bigg|\frac{a_{22}-\lambda}{a_{32}}\bigg| \frac{a_{23}}{a_{33}-\lambda}\bigg| -a_{12}\bigg|\frac{a_{21}}{a_{31}}\bigg|\frac{a_{23}}{a_{33}-\lambda}\bigg| +a_{13}\bigg|\frac{a_{21}}{a_{31}}\bigg|\frac{a_{22}}{a_{3}}
$$

which is a degree 3 polynomial in $\lambda.$

Similarly, if A is $n\times n$, $\det(A-\lambda I)$ will be a degree n polynomial in λ . It is called the ${\bf characteristic\ polynomial\ of}\ A$, and ${\rm det}(A-\lambda I)=0$ is called the ${\bf characteristic}\ A$ **equation**.

Finding eigenvalues and eigenspaces: Let A be an $n \times n$ matrix.

1. Compute the characteristic polynomial $\det(A - \lambda I).$

2. Find the eigenvalues of A by solving the characteristic equation $\det(A - \lambda I) = 0.$ 3. For each eigenvalue λ , find a basis for $E_\lambda = \operatorname{null}(A - \lambda I)$ by solving the system $(A - \lambda I) \, \vec{x} = \vec{0}.$

So we need to get good at solving polynomial equations. Solutions are called **zeros** or **roots**.

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of degree *n* has at most n distinct roots.

Therefore:

Theorem: An $n \times n$ matrix A has at most n distinct eigenvalues.

Also:

Theorem D.2 (The Factor Theorem): Let f be a polynomial and let a be a constant. Then a is a zero of $f(x)$ (i.e. $f(a)=0$) if and only if $x-a$ is a factor of $f(x)$ (i.e. $f(x) = (x-a)g(x)$ for some polynomial g).

Example 4.18: Find the eigenvalues and eigenspaces of $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. $\overline{}$ 0 0 2 1 0 -5 0 1 4 \overline{a} \overline{a}

Solution: 1. On whiteboard, compute the characteristic polynomial:

$$
\det(A-\lambda I)=-\lambda^3+4\lambda^2-5\lambda+2
$$

2. To find the roots, it is often worth trying a few small integers to start. We see that $\lambda = 1$ works. So by the factor theorem, we know $\lambda - 1$ is a factor:

$$
-\lambda^3+4\lambda^2-5\lambda+2=(\lambda-1)(?\lambda^2+?\lambda+?)
$$

Now we need to find roots of $-\lambda^2 + 3\lambda - 2$. Again, $\lambda = 1$ works, and this factors as $-(\lambda-1)(\lambda-2)$. So

$$
\det(A - \lambda I) = -\lambda^3 + 4\lambda^2 - 5\lambda + 2 = -(\lambda - 1)^2(\lambda - 2)
$$

and the roots are $\lambda=1$ and $\lambda=2.$

3. To find the $\lambda=1$ eigenspace, we do row reduction:

$$
[A-I | 0] = \left[\begin{array}{rrr} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 2 & -5 & 3 & 0 \end{array}\right] \rightarrow \left[\begin{array}{rrr} -1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]
$$

We find that $x_3 = t$ is free and $x_1 = x_2 = x_3$, so

Finding a basis for E_2 is similar; see text.

A root a of a polynomial f implies that $f(x) = (x-a)g(x)$. Sometimes, a is also a root of $g(x)$, as we found above. Then $f(x) = \left(x - a \right)^2 h(x)$. The largest k such that $(x - a)^k$ is a factor of f is called the **multiplicity** of the root a in f .

In the case of an eigenvalue, we call its multiplicity in the characteristic polynomial the **algebraic multiplicity** of this eigenvalue.

In the previous example, $\lambda=1$ has algebraic multiplicity 2 and $\lambda=2$ has algebraic multiplicity 1.

We also define the **geometric multiplicity** of an eigenvalue λ to be the dimension of the corresponding eigenspace. In the previous example, $\lambda=1$ has geometric

multiplicity 1 (and so does $\lambda=2$).

Example 4.19: Find the eigenvalues and eigenspaces of $A = \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -3 \end{bmatrix}$. Do $\overline{}$ −1 3 1 0 0 0 1 -3 −1 \overline{a} \overline{a}

partially, on whiteboard.

In this case, we find that $\lambda=0$ has algebraic multiplicity 2 and geometric multiplicity 2.

These multiplicities will be important in Section 4.4.