
Math 1600A Lecture 27, Section 2, 13 Nov 2013

Announcements:

Today we finish 4.2 and start 4.3. Continue reading Section 4.3 for Friday and also read
Appendix D on polynomials (self-study).
Work through recommended homework questions.

Tutorials: No quiz this week, just review.
Office hour: Wednesday, 12:30-1:30, MC103B.
Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Midterm 2 Solutions are available from the course home page. I don't know the class
average yet.

Review Questions

Question: True/false: If  is not invertible, then  is not invertible.

Question: True/false: .

Question:

Question:

Partial review of last class: Cramer's Rule

Notation: If  is an  matrix and , we write  for the matrix obtained

from  by replacing the th column with the vector :

Theorem: Let  be an invertible  matrix and let  be in . Then the unique

solution  of the system  has components

New material: Matrix Inverse using the Adjoint

A AB

det(A + B) = det A + det B

det(3 ) = det = = 9I2 32 I2 32

= − = −abd (not triangular!)
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A n × n ∈b ⃗ Rn ( )Ai b ⃗ 

A i b ⃗ 

( ) = [ ⋯ ⋯ ]Ai b ⃗ a⃗ 1 a⃗ i−1 b ⃗ a⃗ i+1 a⃗ n

A n × n b ⃗ Rn

x⃗ A =x⃗ b ⃗ 

= , for i = 1, … , nxi
det( ( ))Ai b ⃗ 

det A
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Suppose  is invertible. We'll use Cramer's rule to find a formula for . We
know that , so the th column of  satisfies . By Cramer's Rule,

By expanding along the th column, we see that

So

The matrix

is called the adjoint of .

Theorem: If  is an invertible matrix, then

A X = A−1

AX = I j X A =x⃗ j e ⃗ j

=xij

det( ( ))Ai e ⃗ j
det A

i

det( ( )) =Ai e ⃗ j Cji

= , i.e., X = [xij
1

det A
Cji

1
det A

Cij ]T

adjA := [ ] = [ =Cji Cij ]T

⎡
⎣
⎢⎢⎢⎢

C11

C12

⋮
C1n

C21

C22

⋮
C2n

⋯
⋯

⋱
⋯

Cn1

Cn2

⋮
Cnn

⎤
⎦
⎥⎥⎥⎥

A

A

= adjAA−1 1
det A
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Example: If , then the cofactors are

so the adjoint matrix is

and

as we saw before.

See Example 4.17 in the text for a  example. Again, this is not generally a good
computational approach. It's importance is theoretical.

Section 4.3: Eigenvalues and Eigenvectors

Recall from Section 4.1:

Definition: Let  be an  matrix. A scalar  (lambda) is called an eigenvalue of
 if there is a nonzero vector  such that . Such a vector  is called an

eigenvector of  corresponding to .

The eigenvectors for a given eigenvalue  are the nonzero solutions to

.

Definition: The collection of all solutions to  is a subspace called the
eigenspace of  and is denoted . In other words,

It consists of the eigenvectors plus the zero vector.

By the fundamental theorem of invertible matrices,  has a nontrivial null space
if and only if it is not invertible, and we now know that this is the case if and only if

.

The expression  is always a polynomial in . For example, when

A = [ ]a

c

b

d

C11

C21

= + det[d] = +d

= − det[b] = −b

C12

C22

= − det[c] = −c

= + det[a] = +a

adjA = [ ]d

−c

−b

a

= adjA = [ ]A−1 1
det A

1
det A

d

−c

−b

a

3 × 3

A n × n λ
A x⃗ A = λx⃗ x⃗ x⃗ 

A λ

λ

(A − λI) =x⃗ 0⃗ 

(A − λI) =x⃗ 0⃗ 
λ Eλ

= null(A − λI).Eλ

A − λI

det(A − λI) = 0

det(A − λI) λ
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,

In  is , then

which is a degree 3 polynomial in .

Similarly, if  is ,  will be a degree  polynomial in . It is called the
characteristic polynomial of , and  is called the characteristic
equation.

Finding eigenvalues and eigenspaces: Let  be an  matrix.

1. Compute the characteristic polynomial .
2. Find the eigenvalues of  by solving the characteristic equation .
3. For each eigenvalue , find a basis for  by solving the system

.

So we need to get good at solving polynomial equations. Solutions are called zeros or
roots.

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of degree 
has at most  distinct roots.

Therefore:

Theorem: An  matrix  has at most  distinct eigenvalues.

Also:

Theorem D.2 (The Factor Theorem): Let  be a polynomial and let  be a constant.
Then  is a zero of  (i.e. ) if and only if  is a factor of  (i.e.

 for some polynomial ).

Example 4.18: Find the eigenvalues and eigenspaces of .

Solution: 1. On whiteboard, compute the characteristic polynomial:

A = [ ]a

c

b

d

det(A − λI) = = (a − λ)(d − λ) − bc = − (a + d)λ + (ad − b
∣
∣
∣ a − λ

c

b

d − λ

∣
∣
∣ λ2

A 3 × 3

det(A − λI) = ( − λ) − +a11
∣
∣
∣ − λa22

a32

a23

− λa33

∣
∣
∣ a12

∣
∣
∣ a21

a31

a23

− λa33

∣
∣
∣ a13

∣
∣
∣ a21

a31

−a22

a32

λ

A n × n det(A − λI) n λ
A det(A − λI) = 0

A n × n

det(A − λI)
A det(A − λI) = 0

λ = null(A − λI)Eλ

(A − λI) =x⃗ 0⃗ 

n
n

n × n A n

f a
a f(x) f(a) = 0 x − a f(x)

f(x) = (x − a)g(x) g

A =
⎡
⎣

0
0
2

1
0

−5

0
1
4

⎤
⎦
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2. To find the roots, it is often worth trying a few small integers to start. We see that
 works. So by the factor theorem, we know  is a factor:

Now we need to find roots of . Again,  works, and this factors as
. So

and the roots are  and .

3. To find the  eigenspace, we do row reduction:

We find that  is free and , so

So  is a basis of the eigenspace corresponding to .

Finding a basis for  is similar; see text.

A root  of a polynomial  implies that . Sometimes,  is also a

root of , as we found above. Then . The largest  such that

 is a factor of  is called the multiplicity of the root  in .

In the case of an eigenvalue, we call its multiplicity in the characteristic polynomial the
algebraic multiplicity of this eigenvalue.

In the previous example,  has algebraic multiplicity 2 and  has algebraic
multiplicity 1.

We also define the geometric multiplicity of an eigenvalue  to be the dimension of
the corresponding eigenspace. In the previous example,  has geometric

det(A − λI) = − + 4 − 5λ + 2λ3 λ2

λ = 1 λ − 1

− + 4 − 5λ + 2 = (λ − 1)(? + ?λ + ?)λ3 λ2 λ2

− + 3λ − 2λ2 λ = 1
−(λ − 1)(λ − 2)

det(A − λI) = − + 4 − 5λ + 2 = −(λ − 1 (λ − 2)λ3 λ2 )2

λ = 1 λ = 2

λ = 1

[A − I ∣ 0 ] =
⎡
⎣⎢

−1
0
2

1
−1
−5

0
1
3

0
0
0

⎤
⎦⎥→

⎡
⎣⎢

−1
0
0

0
1
0

−1
−1

0

0
0
0

⎤
⎦⎥

= tx3 = =x1 x2 x3

= = spanE1

⎧
⎩⎨⎡

⎣
t

t

t

⎤
⎦

⎫
⎭⎬ ⎛

⎝
⎡
⎣

1
1
1

⎤
⎦

⎞
⎠

⎡
⎣

1
1
1

⎤
⎦ λ = 1

E2

a f f(x) = (x − a)g(x) a

g(x) f(x) = (x − a h(x))2
k

(x − a)k
f a f

λ = 1 λ = 2

λ
λ = 1
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multiplicity 1 (and so does ).

Example 4.19: Find the eigenvalues and eigenspaces of . Do

partially, on whiteboard.

In this case, we find that  has algebraic multiplicity 2 and geometric multiplicity
2.

These multiplicities will be important in Section 4.4.

λ = 2

A =
⎡
⎣

−1
3
1

0
0
0

1
−3
−1

⎤
⎦

λ = 0
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