Math 1600A Lecture 27, Section 2, 13 Nov 2013

Announcements:

Today we finish 4.2 and start 4.3. Continue **reading** Section 4.3 for Friday and also read **Appendix D** on polynomials (**self-study**). Work through recommended homework questions.

Tutorials: No quiz this week, just review. Office hour: Wednesday, 12:30-1:30, MC103B. Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Midterm 2 Solutions are available from the course home page. I don't know the class average yet.

Review Questions

Question: True/false: If A is not invertible, then AB is not invertible.

Question: True/false: det(A + B) = det A + det B.

Question: $det(3I_2) = 3^2 det I_2 = 3^2 = 9$

Question:
$$\begin{vmatrix} 0 & 0 & a \\ 0 & b & c \\ d & e & f \end{vmatrix} = - \begin{vmatrix} d & e & f \\ 0 & b & c \\ 0 & 0 & a \end{vmatrix} = -abd \quad (\text{not triangular!})$$

Partial review of last class: Cramer's Rule

Notation: If A is an $n \times n$ matrix and $\vec{b} \in \mathbb{R}^n$, we write $A_i(\vec{b})$ for the matrix obtained from A by replacing the *i*th column with the vector \vec{b} :

$$A_i(\,ec{b}) = [\,ec{a}_1 \cdots ec{a}_{i-1}\,ec{b}\,ec{a}_{i+1} \cdots ec{a}_n\,]$$

Theorem: Let A be an invertible n imes n matrix and let $ec{b}$ be in \mathbb{R}^n . Then the unique solution $ec{x}$ of the system $A\,ec{x}=\,ec{b}$ has components

$$x_i = rac{\det(A_i(ec{b}))}{\det A}\,, \quad ext{for } i=1,\dots,n$$

New material: Matrix Inverse using the Adjoint

Suppose A is invertible. We'll use Cramer's rule to find a formula for $X = A^{-1}$. We know that AX = I, so the jth column of X satisfies $A \vec{x}_j = \vec{e}_j$. By Cramer's Rule,

$$x_{ij} = rac{\det(A_i(\,ec{e}_j))}{\det A}$$

By expanding along the ith column, we see that

$$\det(A_i(\,\vec{e}_j)) = C_{ji}$$

So

$$x_{ij} = rac{1}{\det A}\,C_{ji}, \quad ext{i.e.}, \quad X = rac{1}{\det A}\left[C_{ij}
ight]^T$$

The matrix

$$\mathrm{adj}A := \left[C_{ji}
ight]^T = egin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \ C_{12} & C_{22} & \cdots & C_{n2} \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots \$$

is called the **adjoint** of A.

Theorem: If A is an invertible matrix, then

$$A^{-1} = rac{1}{\det A} \operatorname{adj} A$$

Example: If $A = egin{bmatrix} a & b \ c & d \end{bmatrix}$, then the cofactors are $C_{11} = +\det[d] = +d \qquad C_{12} = -\det[c] = -c$

$$C_{21}=-\det[b]=-b \qquad C_{22}=+\det[a]=+a$$

so the adjoint matrix is

$$\mathrm{adj}A=egin{bmatrix} d&-b\-c&a \end{bmatrix}$$

and

$$A^{-1} = rac{1}{\det A} \operatorname{adj} A = rac{1}{\det A} egin{bmatrix} d & -b \ -c & a \end{bmatrix}$$

as we saw before.

See Example 4.17 in the text for a 3×3 example. Again, this is not generally a good computational approach. It's importance is theoretical.

Section 4.3: Eigenvalues and Eigenvectors

Recall from Section 4.1:

Definition: Let A be an $n \times n$ matrix. A scalar λ (lambda) is called an **eigenvalue** of A if there is a nonzero vector \vec{x} such that $A \vec{x} = \lambda \vec{x}$. Such a vector \vec{x} is called an **eigenvector** of A corresponding to λ .

The eigenvectors for a given eigenvalue λ are the **nonzero** solutions to $(A - \lambda I) \vec{x} = \vec{0}$.

Definition: The collection of **all** solutions to $(A - \lambda I) \vec{x} = \vec{0}$ is a subspace called the **eigenspace** of λ and is denoted E_{λ} . In other words,

 $E_{\lambda} = \operatorname{null}(A - \lambda I).$

It consists of the eigenvectors plus the zero vector.

By the fundamental theorem of invertible matrices, $A - \lambda I$ has a nontrivial null space if and only if it is not invertible, and we now know that this is the case if and only if $det(A - \lambda I) = 0$.

The expression $\det(A-\lambda I)$ is always a polynomial in $\lambda.$ For example, when

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,

$$\det(A-\lambda I) = egin{bmatrix} a-\lambda & b \ c & d-\lambda \end{bmatrix} = (a-\lambda)(d-\lambda) - bc = \lambda^2 - (a+d)\lambda + (ad-b)\lambda$$

In A is 3 imes 3, then

$$\det(A-\lambda I) = (a_{11}-\lambda) igg| egin{array}{ccc} a_{22}-\lambda & a_{23}\ a_{32} & a_{33}-\lambda \end{array} igg| - a_{12} igg| egin{array}{ccc} a_{21} & a_{23}\ a_{31} & a_{33}-\lambda \end{array} igg| + a_{13} igg| egin{array}{ccc} a_{21} & a_{22} - \lambda & a_{23}\ a_{31} & a_{33}-\lambda \end{array} igg|$$

which is a degree 3 polynomial in λ .

Similarly, if A is $n \times n$, $\det(A - \lambda I)$ will be a degree n polynomial in λ . It is called the **characteristic polynomial** of A, and $\det(A - \lambda I) = 0$ is called the **characteristic equation**.

Finding eigenvalues and eigenspaces: Let A be an $n \times n$ matrix.

1. Compute the characteristic polynomial $\det(A - \lambda I)$.

2. Find the eigenvalues of A by solving the characteristic equation $\det(A - \lambda I) = 0$. 3. For each eigenvalue λ , find a basis for $E_{\lambda} = \operatorname{null}(A - \lambda I)$ by solving the system $(A - \lambda I) \vec{x} = \vec{0}$.

So we need to get good at solving polynomial equations. Solutions are called **zeros** or **roots**.

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of degree n has at most n distinct roots.

Therefore:

Theorem: An n imes n matrix A has at most n distinct eigenvalues.

Also:

Theorem D.2 (The Factor Theorem): Let f be a polynomial and let a be a constant. Then a is a zero of f(x) (i.e. f(a) = 0) if and only if x - a is a factor of f(x) (i.e. f(x) = (x - a)g(x) for some polynomial g).

Example 4.18: Find the eigenvalues and eigenspaces of $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{bmatrix}$.

Solution: 1. On whiteboard, compute the characteristic polynomial:

$$\det(A-\lambda I)=-\lambda^3+4\lambda^2-5\lambda+2$$

2. To find the roots, it is often worth trying a few small integers to start. We see that $\lambda=1$ works. So by the factor theorem, we know $\lambda-1$ is a factor:

$$-\lambda^3+4\lambda^2-5\lambda+2=(\lambda-1)(?\lambda^2+?\lambda+?)$$

Now we need to find roots of $-\lambda^2+3\lambda-2$. Again, $\lambda=1$ works, and this factors as $-(\lambda-1)(\lambda-2)$. So

$$\det(A-\lambda I)=-\lambda^3+4\lambda^2-5\lambda+2=-(\lambda-1)^2(\lambda-2)$$

and the roots are $\lambda=1$ and $\lambda=2.$

3. To find the $\lambda=1$ eigenspace, we do row reduction:

$$\begin{bmatrix} A - I \mid 0 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \mid 0 \\ 0 & -1 & 1 \mid 0 \\ 2 & -5 & 3 \mid 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 0 & -1 \mid 0 \\ 0 & 1 & -1 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{bmatrix}$$

We find that $x_3=t$ is free and $x_1=x_2=x_3$, so

$$E_1 = \left\{ \begin{bmatrix} t \\ t \\ t \end{bmatrix} \right\} = \operatorname{span} \left(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right)$$

So
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 is a basis of the eigenspace corresponding to $\lambda = 1$.

Finding a basis for E_2 is similar; see text.

A root a of a polynomial f implies that f(x) = (x - a)g(x). Sometimes, a is also a root of g(x), as we found above. Then $f(x) = (x - a)^2 h(x)$. The largest k such that $(x - a)^k$ is a factor of f is called the **multiplicity** of the root a in f.

In the case of an eigenvalue, we call its multiplicity in the characteristic polynomial the **algebraic multiplicity** of this eigenvalue.

In the previous example, $\lambda=1$ has algebraic multiplicity 2 and $\lambda=2$ has algebraic multiplicity 1.

We also define the **geometric multiplicity** of an eigenvalue λ to be the dimension of the corresponding eigenspace. In the previous example, $\lambda = 1$ has geometric

multiplicity 1 (and so does $\lambda=2$).

Example 4.19: Find the eigenvalues and eigenspaces of $A = \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -3 \\ 1 & 0 & -1 \end{bmatrix}$. Do

partially, on whiteboard.

In this case, we find that $\lambda=0$ has algebraic multiplicity 2 and geometric multiplicity 2.

These multiplicities will be important in Section 4.4.