
Math 1600A Lecture 28, Section 2, 15 Nov 2013

Announcements:

Today we finish 4.3. Read Section 4.4 for Monday and also read Appendix D on
polynomials (self-study). Work through recommended homework questions.

Tutorials: Quiz 5 is next week.
Office hour: Monday, 1:30-2:30, MC103B.
Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Midterm 2 Solutions are available from the course home page. The average was 27/40
= 68%.

Question: If  is invertible, how do  and  compare?

They are equal:

.

Partial review of last class: Section 4.3

Definition: Let  be an  matrix. A scalar  (lambda) is called an eigenvalue of 

if there is a nonzero vector  such that , i.e. . Such a vector 
is called an eigenvector of  corresponding to .

Definition: The collection of all solutions to  is a subspace called the
eigenspace of  and is denoted . In other words,

It consists of the eigenvectors plus the zero vector.

Definition: If  is ,  will be a degree  polynomial in . It is called
the characteristic polynomial of , and  is called the characteristic
equation.

By the fundamental theorem of invertible matrices, the solutions to the characteristic
equation are exactly the eigenvalues.

Finding eigenvalues and eigenspaces: Let  be an  matrix.

1. Compute the characteristic polynomial .
2. Find the eigenvalues of  by solving the characteristic equation .
3. For each eigenvalue , find a basis for  by solving the system

P det A det( AP)P −1

det( AP) = det( ) det(A) det(P) = det(A) det(P) = det AP −1 P −1 1
det(P)

A n × n λ A

x⃗ A = λx⃗ x⃗ (A − λI) =x⃗ 0⃗ x⃗ 
A λ

(A − λI) =x⃗ 0⃗ 
λ Eλ

= null(A − λI).Eλ

A n × n det(A − λI) n λ
A det(A − λI) = 0

A n × n

det(A − λI)
A det(A − λI) = 0

λ = null(A − λI)Eλ
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.

So we need to get good at solving polynomial equations. Solutions are called zeros or
roots.

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of degree  has
at most  distinct roots.

Therefore:

Theorem: An  matrix  has at most  distinct eigenvalues.

Also:

Theorem D.2 (The Factor Theorem): Let  be a polynomial and let  be a constant.
Then  is a zero of  (i.e. ) if and only if  is a factor of  (i.e.

 for some polynomial ).

The largest  such that  is a factor of  is called the multiplicity of the root  in
.

In the case of an eigenvalue, we call its multiplicity in the characteristic polynomial the
algebraic multiplicity of this eigenvalue.

We also define the geometric multiplicity of an eigenvalue  to be the dimension of the
corresponding eigenspace .

New material: 4.3 continued

Theorem 4.15: The eigenvalues of a triangular matrix are the entries on its main
diagonal (repeated according to their algebraic multiplicity).

Example: If , then

so the eigenvalues are  (with algebraic multiplicity 2) and  (with algebraic
multiplicity 1).

Question: What are the eigenvalues of a diagonal matrix?

The eigenvalues are the diagonal entries.

(A − λI) =x⃗ 0⃗ 

n
n

n × n A n

f a
a f(x) f(a) = 0 x − a f(x)

f(x) = (x − a)g(x) g

k (x − a)k
f a

f

λ
Eλ

A =
⎡
⎣

1
2
4

0
3
5

0
0
1

⎤
⎦

det(A − λI) = = (1 − λ (3 − λ),
∣

∣

∣
∣

1 − λ

2
4

0
3 − λ

5

0
0

1 − λ

∣

∣

∣
∣ )2

λ = 1 λ = 3
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Question: What are the eigenvalues of ?

The characteristic polynomial is

so the eigenvalues are 2 and -2. Trick question.

Question: How can we tell whether a matrix  is invertible using eigenvalues?

 is invertible if and only if 0 is not an eigenvalue, because 0 being an eigenvalue is
equivalent to  being non-trivial, which is equivalent to  not being invertible, by
the fundamental theorem.

So we can extend the fundamental theorem with two new entries:

Theorem 4.17: Let  be an  matrix. The following are equivalent:
a.  is invertible.

b.  has a unique solution for every .

c.  has only the trivial (zero) solution.
d. The reduced row echelon form of  is .
f. 
g. 
h. The columns of  are linearly independent.
i. The columns of  span .
j. The columns of  are a basis for .
k. The rows of  are linearly independent.
l. The rows of  span .
m. The rows of  are a basis for .
n.
o.  is not an eigenvalue of 

Eigenvalues of powers and inverses

Suppose  is an eigenvector of  with eigenvalue . What can we say about ? ? If

 is invertible, how about the eigenvalues/vectors of ? On whiteboard.

We've shown:

Theorem 4.18: If  is an eigenvector of  with eigenvalue , then  is an eigenvector

of  with eigenvalue . This holds for each integer , and also for  if  is
invertible.

[ ]0
1

4
0

= − 4 = (λ − 2)(λ + 2),
∣
∣
∣ −λ

1
4

−λ

∣
∣
∣ λ2

A

A
null(A) A

A n × n
A

A =x⃗ b ⃗ ∈b ⃗ Rn

A =x⃗ 0⃗ 
A In

rank(A) = n
nullity(A) = 0

A
A Rn

A Rn

A
A Rn

A Rn

det A ≠ 0
0 A

x⃗ A λ A2 A3

A A−1

x⃗ A λ x⃗ 
Ak λk k ≥ 0 k < 0 A
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In contrast to some other recent results, this one is very useful computationally:

Example 4.21: Compute .

Solution: By finding the eigenspaces of the matrix, we can show that

Write , ,  and . Since  we

have

Much faster than repeated matrix multiplication, especially if  is replaced with .

This raises an interesting question. In the example, the eigenvectors were a basis for ,

so we could use this method to compute  for any . However, last class we saw a

 matrix with two one-dimensional eigenspaces, so the eigenvectors didn't span .
We will study this further in Section 4.4, but right now we can answer a related question
about linear independence.

Theorem: If  are eigenvectors of  corresponding to distinct eigenvalues
, then  are linearly independent.

Proof in case : If  and  are linearly dependent, then  for some .
Therefore

so

Since , this forces , a contradiction.

The general case is very similar; see text.

If time: how to become a Billionaire using the material from this course.

[ ][ ]0
2

1
1

10
5
1

[ ][ ] = −[ ] and [ ][ ] = 2[ ]0
2

1
1

1
−1

1
−1

0
2

1
1

1
2

1
2

A = [ ]0
2

1
1

= [ ]x⃗ 5
1

= [ ]v ⃗ 1
1

−1
= [ ]v ⃗ 2

1
2

= 3 + 2x⃗ v ⃗ 1 v ⃗ 2

A10 x⃗ = (3 + 2 ) = 3 + 2A10 v ⃗ 1 v ⃗ 2 A10 v ⃗ 1 A10 v ⃗ 2

= 3(−1 + 2( ) = [ ])10
v ⃗ 1 210 v ⃗ 2

3 + 211

−3 + 212

10 100

R2

Ak x⃗ x⃗ 
3 × 3 R3

, , … ,v ⃗ 1 v ⃗ 2 v ⃗ m A
, , … ,λ1 λ2 λm , , … ,v ⃗ 1 v ⃗ 2 v ⃗ m

m = 2 v ⃗ 1 v ⃗ 2 = cv ⃗ 1 v ⃗ 2 c

A = A c = cAv ⃗ 1 v ⃗ 2 v ⃗ 2

= c =λ1 v ⃗ 1 λ2 v ⃗ 2 λ2 v ⃗ 1

≠v ⃗ 1 0⃗ =λ1 λ2 □
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