
Math 1600A Lecture 29, Section 2, 18 Nov 2013

Announcements:

Today we start 4.4. Continue reading Section 4.4 for Wednesday. Work through
recommended homework questions.

Tutorials: Quiz 5 is this week. It covers Appendix C, 4.1, 4.2 and 4.3
Office hour: Monday, 1:30-2:30, MC103B.
Help Centers: Monday-Friday 2:30-6:30 in MC 106.
Course evaluations will be at the start of Wednesday's class.

The final exam will take place on Mon Dec 9, 2-5pm.
Section 001: HSB 236 (last names A-W), HSB 240 (last names X-Z)
Section 002: HSB 240 (last names A-LI), HSB 35 (last names LIU-Z)
The final exam will cover all the material from the course, but will emphasize the later
material. See the course home page for final exam conflict policy. You should already
have notified the registrar or your Dean (and me) of any conflicts!

Partial review of Section 4.3

The eigenvalues of a square matrix  can be computed as the roots (also called
zeros) of the characteristic polynomial

Theorem D.2 (The Factor Theorem): Let  be a polynomial and let  be a constant.
Then  is a root of  (i.e. ) if and only if  is a factor of  (i.e.

 for some polynomial ).

The largest  such that  is a factor of  is called the multiplicity of the root 
in .

Example: Let . Since ,  is a root of . And

since ,  has multiplicity .

In the case of an eigenvalue, we call its multiplicity in the characteristic polynomial the
algebraic multiplicity of this eigenvalue.

We also define the geometric multiplicity of an eigenvalue  to be the dimension of
the corresponding eigenspace .

Theorem 4.15: The eigenvalues of a triangular matrix are the entries on its main
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diagonal (repeated according to their algebraic multiplicity).

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of degree 
has at most  distinct roots. In fact, the sum of the multiplicities is at most .

Therefore:

Theorem: An  matrix  has at most  distinct eigenvalues. In fact, the sum of
the algebraic multiplicities is at most .

New material: complex eigenvalues and eigenvectors

This material isn't covered in detail in the text.

Example 4.7: Find the eigenvalues of  (a) over  and (b) over .

Solution: We must solve

(a) Over , there are no solutions, so  has no real eigenvalues. This is why the
Theorem above says "at most ".

(b) Over , the solutions are  and . For example, the eigenvectors for

 are the nonzero complex multiples of , since

In fact, , so each of these eigenvalues has algebraic
multiplicity 1. So in this case the sum of the algebraic multiplicities is exactly 2.

The Fundamental Theorem of Algebra can be extended to say:

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of degree 
has at most  distinct complex roots. In fact, the sum of their multiplicities is exactly

.

Another way to put it is that over the complex numbers, every polynomial factors into
linear factors.
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Real matrices

Notice that  and  are complex conjugates of each other.

If the matrix  has only real entries, then the characteristic polynomial has real
coefficients. Say it is

with all of the 's real numbers. If  is an eigenvalue, then so is its complex conjugate
, because

Theorem: The complex eigenvalues of a real matrix come in conjugate pairs.

Complex matrices

A complex matrix might have real or complex eigenvalues, and the complex
eigenvalues do not have to come in conjugate pairs.

Examples: , .

General case

In general, don't forget that the quadratic formula

gives the roots of , and these can be real (if ) or complex (if

).

And try small integers first.

Example: Find the real and complex eigenvalues of .

Solution:

i −i
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= = = 0.+ + ⋯ + α +anαn an−1αn−1 a1 a0
¯ ¯¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ 0̄

[ ]1
0

2
i

[ ]1
0

i

2

x =
−b ± − 4acb2− −−−−−−√

2a

a + bx + cx2 − 4ac ⩾ 0b2

− 4ac < 0b2

A =
⎡
⎣

2
1
0

3
2

−2

0
2
1

⎤
⎦

Math 1600 Lecture 29 3 of 7



By trial and error,  is a root. So we factor:

We don't find any obvious roots for the quadratic factor, so we use the quadratic
formula:

So the eigenvalues are ,  and .

Note: Our questions always involve real eigenvalues and real eigenvectors unless we
say otherwise. But there will be problems where we ask for complex eigenvalues.

More review: Eigenvalues of powers and inverses

Theorem 4.18: If  is an eigenvector of  with eigenvalue , then  is an

eigenvector of  with eigenvalue . This holds for each integer , and also for
 if  is invertible.

We saw that this was useful computationally. We also saw:

Theorem: If  are eigenvectors of  corresponding to distinct
eigenvalues , then  are linearly independent.

We saw that sometimes the eigenvectors span , and sometimes they don't.

Section 4.4: Similarity and Diagonalization

We're going to introduce a new concept that will turn out to be closely related to
eigenvalues and eigenvectors.

Definition: Let  and  be  matrices. We say that  is similar to  if there is
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an invertible matrix  such that . When this is the case, we write .

It is equivalent to say that  or .

Example 4.22: Let  and . Then , since

We also need to check that the matrix  is invertible, which is the case

since its determinant is .

It is tricky in general to find such a  when it exists. We'll learn a method that works in
a certain situation in this section.

Theorem 4.21: Let ,  and  be  matrices. Then:
a. .
b. If  then .
c. If  and , then .

Proof: (a) 

(b) Suppose . Then  for some invertible matrix . Then

. Let . Then , so .

(c) Exercise.

Similar matrices have a lot of properties in common.

Theorem 4.22: Let  and  be similar matrices. Then:
a. 
b.  is invertible iff  is invertible.
c.  and  have the same rank.
d.  and  have the same characteristic polynomial.
e.  and  have the same eigenvalues.

Proof: Assume that  for some invertible matrix .

We discussed (a) last time:
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AP = PB A = PBP −1
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A B C n × n
A ∼ A

A ∼ B B ∼ A
A ∼ B B ∼ C A ∼ C

AI = AI −1

A ∼ B AP = BP −1 P

PB = AP −1 Q = P −1 BQ = AQ−1 B ∼ A

□
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det A = det B
A B
A B
A B
A B

AP = BP −1 P
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(b) follows immediately.

(c) takes a bit of work and will not be covered.

(d) follows from (a): since  it follows that
 and  have the same determinant.

(e) follows from (d).

Question: Are  and  similar?

Question: Are  and  similar?

See also Example 4.23(b) in text.

Diagonalization

Definition:  is diagonalizable if it is similar to some diagonal matrix.

Example 4.24:  is diagonalizable. Take . Then

If  is similar to a diagonal matrix , then  must have the eigenvalues of  on the
diagonal. But how to find ?

Theorem 4.23: Let  be an  matrix. Then  is diagonalizable if and only if 
has  linearly independent eigenvectors.

More precisely, there exist an invertible matrix  and a diagonal matrix  with

 if and only if the columns of  are  linearly independent eigenvectors
of  and the diagonal entries of  are the corresponding eigenvalues in the same
order.

Proof: Suppose  are  linearly independent eigenvectors of , and let
. Write  for the th eigenvalue, so  for each , and

det(B) = det( AP) = det( ) det(A) det(P)P −1 P −1

= det(A) det(P) = det A.
1

det(P)

B − λI = AP − λI = (A − λI)PP −1 P −1

B − λI A − λI
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let  be the diagonal matrix with the 's on the diagonal. Then

so , as required.

On the other hand, if  and  is diagonal, then , and if follows
from an argument like the one above that the columns of  are eigenvectors of , and
the eigenvalues are the diagonal entries of .

This theorem is one of the main reasons we want to be able to find eigenvectors of a
matrix. Moreover, the more eigenvectors the better, so this motivates allowing complex
eigenvectors. We're going to say a lot more about diagonalization.

D λi
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