Math 1600A Lecture 29, Section 2, 18 Nov 2013

Announcements:

Today we start 4.4. Continue **reading** Section 4.4 for Wednesday. Work through recommended homework questions.

Tutorials: Quiz 5 is this week. It covers Appendix C, 4.1, 4.2 and 4.3 **Office hour:** Monday, 1:30-2:30, MC103B. **Help Centers:** Monday-Friday 2:30-6:30 in MC 106. **Course evaluations** will be at the start of Wednesday's class.

The **final exam** will take place on Mon Dec 9, 2-5pm. Section 001: HSB 236 (last names A-W), HSB 240 (last names X-Z) Section 002: HSB 240 (last names A-**LI**), HSB 35 (last names LIU-Z) The final exam will cover all the material from the course, but will emphasize the later material. See the course home page for final exam **conflict** policy. You should **already** have notified the registrar or your Dean (and me) of any conflicts!

Partial review of Section 4.3

The eigenvalues of a square matrix A can be computed as the roots (also called **zeros**) of the **characteristic polynomial**

$$
\det(A-\lambda I)
$$

Theorem D.2 (The Factor Theorem): Let f be a polynomial and let a be a constant. Then a is a root of $f(x)$ (i.e. $f(a) = 0$) if and only if $x-a$ is a factor of $f(x)$ (i.e. $f(x) = (x-a)g(x)$ for some polynomial g).

The largest k such that $\left(x - a\right)^k$ is a factor of f is called the ${\bf multiplicity}$ of the root a in f .

Example: Let $f(x) = x^2 - 2x + 1$. Since $f(1) = 1 - 2 + 1 = 0$, 1 is a root of f . And since $f(x) = \left(x - 1 \right)^2$, 1 has multiplicity $2.$

In the case of an eigenvalue, we call its multiplicity in the characteristic polynomial the **algebraic multiplicity** of this eigenvalue.

We also define the **geometric multiplicity** of an eigenvalue λ to be the dimension of the corresponding eigenspace $E_\lambda.$

Theorem 4.15: The eigenvalues of a triangular matrix are the entries on its main

diagonal (repeated according to their algebraic multiplicity).

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of degree *n* has at most n distinct roots. In fact, the sum of the multiplicities is at most n .

Therefore:

 $\bf Theorem:$ An $n\times n$ matrix A has at most n distinct eigenvalues. In fact, the sum of the algebraic multiplicities is at most $n.$

New material: complex eigenvalues and eigenvectors

This material isn't covered in detail in the text.

Example 4.7: Find the eigenvalues of $A = \begin{bmatrix} 0 & -1 \ 1 & 0 \end{bmatrix}$ (a) over \R and (b) over $\mathbb C.$ 1 −1 $\mathop{0} \limits^{\bullet}\big]$ (a) over $\mathbb R$ and (b) over $\mathbb C$

Solution: We must solve

$$
0=\det(A-\lambda I)=\det\begin{bmatrix}-\lambda & -1\\ 1 & -\lambda\end{bmatrix}=\lambda^2+1.
$$

(a) Over \R , there are no solutions, so A has no real eigenvalues. This is why the Theorem above says "at most n ".

(b) Over $\mathbb C$, the solutions are $\lambda = i$ and $\lambda = -i$. For example, the eigenvectors for $\lambda = i$ are the nonzero complex multiples of $\begin{bmatrix} i \ 1 \end{bmatrix}$, since 1

$$
\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ i \end{bmatrix} = i \begin{bmatrix} i \\ 1 \end{bmatrix}.
$$

In fact, $\lambda^2+1=(\lambda-i)(\lambda+i)$, so each of these eigenvalues has algebraic multiplicity 1. So in this case the sum of the algebraic multiplicities is **exactly** 2.

The Fundamental Theorem of Algebra can be extended to say:

Theorem D.4 (The Fundamental Theorem of Algebra): A polynomial of degree *n* has at most n distinct complex roots. In fact, the sum of their multiplicities is exactly . *n*

Another way to put it is that over the complex numbers, every polynomial factors into **linear** factors.

Real matrices

Notice that i and $-i$ are complex conjugates of each other.

If the matrix A has only real entries, then the characteristic polynomial has real coefficients. Say it is

$$
\det(A-\lambda I)=a_n\lambda^n+a_{n-1}\lambda^{n-1}+\cdots+a_1\lambda+a_0,
$$

with all of the a_i 's real numbers. If α is an eigenvalue, then so is its complex conjugate $\bar{\alpha}$, because

$$
a_n\bar{\alpha}^n + a_{n-1}\bar{\alpha}^{n-1} + \cdots + a_1\bar{\alpha} + a_0
$$

=
$$
\overline{a_n\alpha^n + a_{n-1}\alpha^{n-1} + \cdots + a_1\alpha + a_0} = \bar{0} = 0.
$$

Theorem: The complex eigenvalues of a **real** matrix come in conjugate pairs.

Complex matrices

A complex matrix might have real or complex eigenvalues, and the complex eigenvalues do not have to come in conjugate pairs.

Examples:
$$
\begin{bmatrix} 1 & 2 \ 0 & i \end{bmatrix}, \begin{bmatrix} 1 & i \ 0 & 2 \end{bmatrix}.
$$

General case

In general, don't forget that the quadratic formula

$$
x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
$$

gives the roots of $ax^2 + bx + c$, and these can be real (if $b^2 - 4ac \geqslant 0$) or complex (if $b^2-4ac < 0$).

And try small integers first.

Example: Find the real and complex eigenvalues of $A = \begin{bmatrix} 2 & 3 & 0 \\ 1 & 2 & 2 \end{bmatrix}$. $\overline{}$ 2 1 0 3 2 -2 0 2 1 \overline{a} \overline{a}

Solution:

Math 1600 Lecture 29 μ and μ and μ of 7

$$
\begin{vmatrix} 2-\lambda & 3 & 0 \\ 1 & 2-\lambda & 2 \\ 0 & -2 & 1-\lambda \end{vmatrix} = (2-\lambda)\begin{vmatrix} 2-\lambda & 2 \\ -2 & 1-\lambda \end{vmatrix} - 3\begin{vmatrix} 1 & 2 \\ 0 & 1-\lambda \end{vmatrix}
$$

$$
= (2-\lambda)(\lambda^2 - 3\lambda + 6) - 3(1-\lambda)
$$

$$
= -\lambda^3 + 5\lambda^2 - 9\lambda + 9.
$$

By trial and error, $\lambda = 3$ is a root. So we factor:

$$
-\lambda^3+5\lambda^2-9\lambda+9=(\lambda-3)(-\lambda^2+2\lambda-3)
$$

We don't find any obvious roots for the quadratic factor, so we use the quadratic formula:

$$
\lambda = \frac{-2 \pm \sqrt{2^2 - 4(-1)(-3)}}{-2} = \frac{-2 \pm \sqrt{-8}}{-2} = \frac{-2 \pm 2\sqrt{2}i}{-2} = 1 \pm \sqrt{2}i.
$$

So the eigenvalues are 3 , $1 + \sqrt{2\,i}$ and $1 - \sqrt{2\,i}$.

Note: Our questions always involve real eigenvalues and real eigenvectors unless we say otherwise. But there **will** be problems where we ask for complex eigenvalues.

More review: Eigenvalues of powers and inverses

Theorem 4.18: If \vec{x} is an eigenvector of A with eigenvalue λ , then \vec{x} is an eigenvector of A^k with eigenvalue $\lambda^k.$ This holds for each integer $k\geq 0$, and also for $k < 0$ if A is invertible.

We saw that this was useful computationally. We also saw:

 ${\sf Theorem}\colon$ If $\vec v_1,\,\vec v_2,\ldots,\,\vec v_m$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_m$, then $\,\vec{v}_1,\,\vec{v}_2, \ldots,\,\vec{v}_m\,$ are linearly independent.

We saw that sometimes the eigenvectors span \mathbb{R}^n , and sometimes they don't.

Section 4.4: Similarity and Diagonalization

We're going to introduce a new concept that will turn out to be closely related to eigenvalues and eigenvectors.

Definition: Let A and B be $n \times n$ matrices. We say that A is $\boldsymbol{\mathsf{s}}$ imilar to B if there is

an invertible matrix P such that $P^{-1}AP = B.$ When this is the case, we write $A \sim B.$

It is equivalent to say that $AP = PB$ or $A = PBP^{-1}$.

Example 4.22: Let
$$
A = \begin{bmatrix} 1 & 2 \ 0 & -1 \end{bmatrix}
$$
 and $B = \begin{bmatrix} 1 & 0 \ -2 & -1 \end{bmatrix}$. Then $A \sim B$, since\n
$$
\begin{bmatrix} 1 & 2 \ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \ -2 & -1 \end{bmatrix}.
$$

We also need to check that the matrix $P=\begin{bmatrix} 1 & -1\ 1 & -1 \end{bmatrix}$ is invertible, which is the case since its determinant is $2.$ 1 −1 1

It is tricky in general to find such a P when it exists. We'll learn a method that works in a certain situation in this section.

 $\bf{Theorem~4.21:}$ Let A , B and C be $n\times n$ matrices. Then:

a. $A \sim A$. b. If $A \sim B$ then $B \sim A$. $\mathsf{c}.$ If $A\sim B$ and $B\sim C$, then $A\sim C.$

Proof: (a) $I^{-1}AI = A$

(b) Suppose $A \sim B$. Then $P^{-1}AP = B$ for some invertible matrix P . Then $PBP^{-1} = A$. Let $Q = P^{-1}$. Then $Q^{-1}BQ = A$, so $B \sim A$.

(c) Exercise. □

Similar matrices have a lot of properties in common.

Theorem 4.22: Let A and B be similar matrices. Then:

a. $\det A = \det B$

- b. A is invertible iff B is invertible.
- c. A and B have the same rank.
- d. A and B have the same characteristic polynomial.
- e. A and B have the same eigenvalues.

Proof: Assume that $P^{-1}AP = B$ for some invertible matrix P .

We discussed (a) last time:

$$
\begin{aligned} \det(B) &= \det(P^{-1}AP) = \det(P^{-1})\det(A)\det(P) \\ &= \frac{1}{\det(P)}\det(A)\det(P) = \det A. \end{aligned}
$$

(b) follows immediately.

(c) takes a bit of work and will not be covered.

(d) follows from (a): since $B-\lambda I = P^{-1}AP - \lambda I = P^{-1}(A-\lambda I)P$ it follows that $B-\lambda I$ and $A-\lambda I$ have the same determinant.

(e) follows from (d). □

Question: Are $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$ similar? **Question:** Are $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ similar? 3 $\begin{bmatrix} 2 \ 4 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 \ 2 & -1 \end{bmatrix}$ 1 −1 0 $\begin{bmatrix} 1 \ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$ 0 1

See also Example 4.23(b) in text.

Diagonalization

Definition: A is **diagonalizable** if it is similar to some diagonal matrix.

Example 4.24:
$$
A = \begin{bmatrix} 1 & 3 \ 2 & 3 \end{bmatrix}
$$
 is diagonalizable. Take $P = \begin{bmatrix} 1 & 3 \ 1 & -2 \end{bmatrix}$. Then

$$
P^{-1}AP = \dots = \begin{bmatrix} 4 & 0 \ 0 & -1 \end{bmatrix}
$$

If A is similar to a diagonal matrix D , then D must have the eigenvalues of A on the diagonal. But how to find P ?

Theorem 4.23: Let A be an $n\times n$ matrix. Then A is diagonalizable if and only if A has n linearly independent eigenvectors.

More precisely, there exist an invertible matrix P and a diagonal matrix D with $P^{-1}AP = D$ if and only if the columns of P are n linearly independent eigenvectors of A and the diagonal entries of D are the corresponding eigenvalues in the same order.

Proof: Suppose $\vec{p}_1, \vec{p}_2, \ldots, \vec{p}_n$ are n linearly independent eigenvectors of A, and let . Write λ_i for the i th eigenvalue, so $A \, \vec{p}_{i} = \lambda_i \, \vec{p}_{i}$ for each i , and $\vec{p}_1, \, \vec{p}_2, \ldots, \, \vec{p}_n$ are n linearly independent eigenvectors of A $P=[\vec{\,p}_1\ \vec{p}_2\ \cdots\ \vec{p}_n]$. Write λ_i for the i th eigenvalue, so $A\,\vec{p}_i=\lambda_i\,\vec{p}_i$ for each i

let D be the diagonal matrix with the λ_i 's on the diagonal. Then

$$
AP = A[\vec{p}_1 \vec{p}_2 \cdots \vec{p}_n] = [\lambda_1 \vec{p}_1 \lambda_2 \vec{p}_2 \cdots \lambda_n \vec{p}_n]
$$

$$
= [\vec{p}_1 \vec{p}_2 \cdots \vec{p}_n] \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}
$$

so $P^{-1}AP = D$, as required.

On the other hand, if $P^{-1}AP = D$ and D is diagonal, then $AP = PD$, and if follows from an argument like the one above that the columns of P are eigenvectors of A , and the eigenvalues are the diagonal entries of $D. \quad \Box$

This theorem is one of the main reasons we want to be able to find eigenvectors of a matrix. Moreover, the more eigenvectors the better, so this motivates allowing complex eigenvectors. We're going to say a lot more about diagonalization.