
Math 1600A Lecture 30, Section 2, 20 Nov 2013

Announcements:

Today we finish 4.4. Read Markov chains part of Section 4.6 for Friday. Not covering
Section 4.5, or rest of 4.6 (which contains many interesting applications!) Work through
recommended homework questions. Some updated!

Tutorials: Quiz 5 is this week. It covers Appendix C, 4.1, 4.2 and 4.3
Office hour: Wednesday, 12:30-1:30, MC103B.
Help Centers: Monday-Friday 2:30-6:30 in MC 106.

The final exam will take place on Mon Dec 9, 2-5pm.
See course home page for rooms and for the conflict policy.
You should already have notified the registrar or your Dean (and me) of any conflicts!

True/false: Every polynomial of degree  has exactly  distinct roots over .

False. For example,  has only the root . A polynomial of degree  has exactly 
complex roots if you count them with multiplicity. Over , the sum of the multiplicities is
at most .

True/false: The complex eigenvalues of a matrix always come in conjugate pairs.
False. This is true if the matrix has only real entries, but

has  as an eigenvalue, but not .

True/false: If  is an eigenvalue of  and , then  is an eigenvalue of .

True, since if , then .

True/false: The identity matrix is similar to every matrix.

False. Since  for any invertible , the identity matrix is only similar to itself.

True/False: If  and  have the same eigenvalues, then  and  are similar.

False. For example,  and  have the same eigenvalues, but aren't similar.

Review of Section 4.4

Definition: Let  and  be  matrices. We say that  is similar to  if there is an
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invertible matrix  such that . When this is the case, we write .

It is equivalent to say that  or .

It is tricky in general to find such a  when it exists. We'll learn a method that works in a
certain situation in this section.

Theorem 4.21: Let ,  and  be  matrices. Then:
a. .
b. If  then .
c. If  and , then .

Similar matrices have a lot of properties in common.

Theorem 4.22: Let  and  be similar matrices. Then:
a. 
b.  is invertible iff  is invertible.
c.  and  have the same rank.
d.  and  have the same characteristic polynomial.
e.  and  have the same eigenvalues.

Question: Are  and  similar?

Diagonalization

Definition:  is diagonalizable if it is similar to some diagonal matrix.

If  is similar to a diagonal matrix , then  must have the eigenvalues of  on the
diagonal. But how to find ?

Theorem 4.23: Let  be an  matrix. Then  is diagonalizable if and only if  has
 linearly independent eigenvectors.

More precisely, there exist an invertible matrix  and a diagonal matrix  with

 if and only if the columns of  are  linearly independent eigenvectors of
 and the diagonal entries of  are the corresponding eigenvalues in the same order.

This theorem is one of the main reasons we want to be able to find eigenvectors of a
matrix. Moreover, the more eigenvectors the better, so this motivates allowing complex
eigenvectors.

In section 4.3, we saw:

Theorem 4.20: If  are eigenvectors of  corresponding to distinct
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eigenvalues , then  are linearly independent.

New material: Section 4.4 continued

Example: Is the matrix diagonalizable?

Yes. The eigenvalues are ,  and , and for each one there is at least one eigenvector.
These are linearly independent (by Theorem 4.20), and there are three of them, so  is
diagonalizable (by Theorem 4.23).

To find the matrix  explicitly, we need to solve the three systems to find the
eigenvectors.

Theorem 4.25: If  in an  matrix with  distinct eigenvalues, then  is
diagonalizable.

Example 4.25: Is  diagonalizable? If so, find a matrix  that

diagonalizes it.

Solution: In Example 4.18 we found that the eigenvalues are  (with algebraic

multiplicity 2) and  (with algebraic multiplicity 1). A basis for  is  and a

basis for  is . Since every eigenvector is a scalar multiple of one of these, it is

not possible to find three linearly independent eigenvectors. So  is not diagonalizable.

Example 4.26: Is  diagonalizable? If so, find a matrix  that

diagonalizes it.

Solution: In Example 4.19 (done mostly on whiteboard, but also in text) we found that
the eigenvalues are  (with algebraic multiplicity 2) and  (with algebraic

multiplicity 1). A basis for  is  and . A basis for  is
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. These are linearly independent (see below). Thus

is invertible, and by the theorem, we must have

(Note that to check an answer like this, it is usually easiest to check that . Do
so!)

Note: Different orders work too.

Theorem 4.24: If  are distinct eigenvalues of  and, for each ,  is a basis
for the eigenspace , then the union of the 's is a linearly independent set.

The proof of this is similar to the proof of Theorem 4.20, where we had only one non-zero
vector in each eigenspace.

Combining Theorems 4.23 and 4.24 gives the following important consequence:

Theorem: An  matrix is diagonalizable if and only if the sum of the geometric
multiplicities of the eigenvalues is .

Look at Examples 4.25 and 4.26 again.

So it is important to understand the geometric multiplicities better. Here is a helpful
result:

Lemma 4.26: If  is an eigenvalue of an  matrix , then

We'll prove this in a minute. First, let's look at what it implies:

Let  be an  matrix with distinct eigenvalues . Let their geometric
multiplicities be  and their algebraic multiplicities be . We
know
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and so

So the only way to have  is to have  for each  and
.

This gives the main theorem of the section:

Theorem 4.27 (The Diagonalization Theorem): Let  be an  matrix with
distinct eigenvalues . Let their geometric multiplicities be 
and their algebraic multiplicities be . Then the following are equivalent:
a.  is diagonalizable.
b. .
c.  for each and .

Note: This is stated incorrectly in the text. The red part must be added unless you are
working over , in which case it is automatic that . With the way I
have stated it, it is correct over  or over .

Example: Is diagonalizable?

It depends. If we are working over , there are no eigenvalues and no eigenvectors, so
no, it is not diagonalizable, and (a), (b) and (c) all fail.

If we are working over , then  and  are eigenvalues, and are distinct, so  is
diagonalizable, and (b) and (c) hold too. Note that in this case,  will be complex: To find

, we first find that corresponding eigenvectors are  and . So if

we take

we find that

We still need to prove Lemma 4.26, and will do so next class.
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