
Math 1600A Lecture 31, Section 2, 22 Nov 2013

Announcements:

Today we finish 4.4 and cover the Markov chains part of Section 4.6. Not covering
Section 4.5, or rest of 4.6 (which contains many interesting applications!) Read Section
5.1 for Monday. Work through recommended homework questions. Some updated!

Tutorials: Quiz 6 is next week. It covers Sections 4.4 and the Markov Chains part of 4.6.
Office hour: Monday, 1:30-2:30, MC103B.
Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Review of Section 4.4

Definition: Let  and  be  matrices. We say that  is similar to  if there is an

invertible matrix  such that . When this is the case, we write .

Theorem 4.22: Let  and  be similar matrices. Then:
a. 
b.  is invertible iff  is invertible.
c.  and  have the same rank.
d.  and  have the same characteristic polynomial.
e.  and  have the same eigenvalues.

Definition:  is diagonalizable if it is similar to some diagonal matrix.

If  is similar to a diagonal matrix , then  must have the eigenvalues of  on the
diagonal. But how to find ?

Theorem 4.23: Let  be an  matrix. Then  is diagonalizable if and only if  has
 linearly independent eigenvectors.

More precisely, there exist an invertible matrix  and a diagonal matrix  with

 if and only if the columns of  are  linearly independent eigenvectors of
 and the diagonal entries of  are the corresponding eigenvalues in the same order.

This theorem is one of the main reasons we want to be able to find eigenvectors of a
matrix. Moreover, the more eigenvectors the better, so this motivates allowing complex
eigenvectors.

Theorem 4.24: If  are distinct eigenvalues of  and, for each ,  is a basis
for the eigenspace , then the union of the 's is a linearly independent set.

Combining Theorems 4.23 and 4.24 gives the following important consequence:
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Theorem: An  matrix is diagonalizable if and only if the sum of the geometric
multiplicities of the eigenvalues is .

In particular:

Theorem 4.25: If  in an  matrix with  distinct eigenvalues, then  is
diagonalizable.

So it is important to understand the geometric multiplicities better. Here is a helpful
result:

Lemma 4.26: If  is an eigenvalue of an  matrix , then

We'll prove this in a minute. First, let's look at what it implies:

Let  be an  matrix with distinct eigenvalues . Let their geometric
multiplicities be  and their algebraic multiplicities be . We
know

and so

So the only way to have  is to have  for each  and
.

This gives the main theorem of the section:

Theorem 4.27 (The Diagonalization Theorem): Let  be an  matrix with
distinct eigenvalues . Let their geometric multiplicities be 
and their algebraic multiplicities be . Then the following are equivalent:
a.  is diagonalizable.
b. .
c.  for each and .

Note: This is stated incorrectly in the text. The red part must be added unless you are
working over , in which case it is automatic that . With the way I
have stated it, it is correct over  or over .

New material

We still need to prove:
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Lemma 4.26: If  is an eigenvalue of an  matrix , then

Proof (more direct than in text): Suppose that  is an eigenvalue of  with
geometric multiplicity , and let  be a basis for , so

Let  be an invertible matrix whose first  columns are :

Since , we know that  for . Also, the first  columns of

 are . So the first  columns of  are .

Therefore the matrix  has  as an eigenvalue with algebraic multiplicity at least

. But  has the same characteristic polynomial as , so  must also have
algebraic multiplicity at least  for . .

Summary of diagonalization: Given an  matrix , we would like to determine
whether  is diagonalizable, and if it is, find the invertible matrix  and the diagonal

matrix  such that . The result may depend upon whether you are
working over  or .

Steps:

1. Compute the characteristic polynomial  of .
2. Find the roots of the characteristic polynomial and their algebraic multiplicities by
factoring.
3. If the algebraic multiplicities don't add up to , then  is not diagonalizable, and you
can stop. (If you are working over , this can't happen.)
4. For each eigenvalue , compute the dimension of the eigenspace . This is the
geometric multiplicity of , and if it is less than the algebraic multiplicity, then  is not
diagonalizable, and you can stop.
5. Compute a basis for the eigenspace .
6. If for each eigenvalue the geometric multiplicity equals the algebraic multiplicity, then
you take the  eigenvectors you found and put them in the columns of a matrix . Put
the eigenvalues in the same order on the diagonal of a matrix .
7. Check that .

Note that step 4 only requires you to find the row echelon form of , as the
number of free variables here is the geometric multiplicity. In step 5, you solve the
system.

Powers
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Suppose , where  is diagonal. Then . We can use this to
compute powers of . For example,

and  is easy to compute since  is diagonal: you just raise the diagonal entries to the
fifth power.

More generally, . This is clearly an efficient way to compute powers!
Note that we need to know , not just , to do this.

See Example 4.29 for a sample calculation. We'll illustrate this result with an example
from Markov Chains.

Review of Markov chains

A Markov chain has a finite set of states  and there is an  matrix 
(called the transition matrix) with the property that the  entry  is the probability

that you transition from state  to state  in one time step.

Since you must transition to some state, . That is, the entries in

each column sum to 1. Moreover, each entry . Such a  is called a stochastic

matrix.

We can represent the current state of the system with a state vector . The th
entry of  may denote the number of people/objects in state . Or we may divide by the
total number, so the th entry of  gives the fraction of people/objects in state . In this
case,  has non-negative entries that sum to 1 and is called a probability vector.

If  denotes the state after  time steps, then the state after one more time step is
given by

It follows that . Therefore:

The  entry  of  is the probability of going from state  to state  in  steps.

A state  such that  is called a steady state vector. This is the same as an
eigenvector with eigenvalue 1. In Lecture 22, we proved:

Theorem 4.30: Every stochastic matrix has a steady state vector, i.e. it has  as
an eigenvalue.
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We proved this using the fact that  and  have the same eigenvalues, and then

noticing that the vector with all 's is an eigenvector of  with eigenvalue 1.

Example: We studied toothpaste usage, and had transition matrix

We noticed experimentally that a given starting state tends to the state  and that

We then found this steady state vector algebraically by solving . [It is

equivalent to solve .]

With our new tools, we can go further now.

Section 4.6: Markov chains

Let's compute powers of the matrix  above. One can show that  has characteristic
polynomial

and so has eigenvalues  and . The eigenspaces are

So if we write , we have that . Therefore,

As , , so
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It follows that if we start with any state  with , we'll find that

This explains why every state tends to the steady state! (It also gives a fast way to
compute  for large .)

This is a very general phenomenon:

Theorem 4.31: Let  be an  stochastic matrix. Then every eigenvalue  has
.

If in addition the entries of  are all positive, then all eigenvalues besides  have
.

The general proof just involves some inequalities, but the notation is confusing. Let's see
how the argument goes in the special case of

The key idea is to study the eigenvalues of , which are the same as those of .

Suppose  is an eigenvector of  with . Then  which

means that

The second component gives

and so . If we allow  and  to be negative or complex, we need to use absolute
values, and we can conclude that .

The other part of the Theorem is similar.

This theorem helps us understand the long-term behaviour:

Theorem 4.33: Let  be an  stochastic matrix all of whose entries are positive.

Then as , , a matrix all of whose columns are equal to the same vector
 which is a steady state probability vector for .
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Proof: We'll assume  is diagonalizable: . So . As

,  approaches a matrix  with 's and 's on the diagonal (by Theorem

4.31), which means that  approaches .

Now that we know that  has some limit , we can deduce something about it. Since

, we have

This means that the columns of  must be steady-state vectors for . Since the columns

of  are probability vectors, the same must be true of the columns of . It's not hard to
show that  has a unique steady-state probability vector , so , as
required.

Finally, we can deduce that Markov chains tend to their steady states:

Theorem 4.34: Let  be an  stochastic matrix all of whose entries are positive,
and let  be any initial probability vector. Then as , , where  is the
steady state probability vector for .

Proof: Suppose that  has components . Then

This result works both ways: if you compute the eigenvector with eigenvalue 1, that tells
you the steady-state vector that other states go to as . But it also means that if
you don't know the steady-state vector, you can approximate it by starting with any

vector  and computing  for large !

The latter is what Google does to compute the page rank eigenvector.
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