Announcements

- 1. Quiz 6 covers section 4.4 and Markov chains part of 4.6
- 2. **Read** Section 5.0, 5.1,5.2 for Wednesday. Work through recommended home-work questions.
- 3. Office hours today 11-12 MC 121.
- 4. Lecture notes (including this page) is available on my webpage: http://www.math.uwo.ca/~hbacard/teaching.html

Last time

Summary of Diagonalization

Objective: Given an $n \times n$ matrix A, we would like to determine whether A is diagonalizable, and if it is, find the invertible matrix P and the diagonal matrix D such that $P^{-1}AP = D$. The result may depend upon whether you are working over \mathbb{R} or \mathbb{C} .

Steps

- \Rightarrow Compute the characteristic polynomial $det(A \lambda I)$ of A.
- ⇒ Find the roots of the characteristic polynomial and their algebraic multiplicities by factoring.
- ⇒ If the algebraic multiplicities don't add up to n, then A is not diagonalizable, and you can stop. (If you are working over \mathbb{C} , this can't happen.)
- \Rightarrow For each eigenvalue λ , compute the dimension of the eigenspace E_{λ} . This is the geometric multiplicity of λ , and if it is less than the algebraic multiplicity, then A is not diagonalizable, and you can stop.
- \Rightarrow Compute a basis for the eigenspace E_{λ} .
- ⇒ If for each eigenvalue the geometric multiplicity equals the algebraic multiplicity, then you take the *n* eigenvectors you found and put them in the columns of a matrix *P*. Put the eigenvalues in the same order on the diagonal of a matrix *D*.
- \Rightarrow Check that AP = PD.

Computing powers If A is diagonalizable i.e, there is an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$, then we can compute with less pain the powers of A.

One writes

$$P^{-1}AP = D \Leftrightarrow A = PDP^{-1},$$

and observe that

$$A^{2} = (PDP^{-1})(PDP^{-1}) = PD(\underbrace{P^{-1}P}_{=I})DP^{-1} = PD^{2}P^{-1}$$

 \Rightarrow Pattern:

$$A^k = PD^kP^{-1}$$

Markov chains (4.6)

Recall: A stochastic matrix is a matrix $P = [P_{ij}]$ such that $P_{ij} \ge 0$ and $P_{1j} + P_{2j} + \cdots + P_{nj} = 1$, for all j.

 \Rightarrow Examples of such are transition matrix P of a Markov chain.

$$\overrightarrow{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 is a **probability vector** if $x_i \ge 0$ and $x_1 + x_2 + \cdots + x_n = 1$

A probability vector \vec{x} that satisfies $P\vec{x} = \vec{x}$ is called a **a steady state vector**. This is exactly the same thing as an eigenvector with eigenvalue 1

4 main Theorems

Theorem 4.30 If P is an $n \times n$ transition matrix of a Markov chain, then 1 is an eigenvalue of P

Theorem 4.31 Let P be an $n \times n$ transition matrix.

- 1. Then every eigenvalue λ has $|\lambda| \leq 1$
- 2. If P is regular (some power is positive), then all eigenvalues beside $\lambda = 1$ have $|\lambda| < 1$

Theorem 4.33 Let P be an $n \times n$ stochastic matrix all of whose entries are positive. Then as $k \longrightarrow \infty$, $P^k \longrightarrow L$, a matrix all of whose columns are equal to the same vector \overrightarrow{x} which is a steady state probability vector for P

Example Let $P = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix}$. An easy computation give the characteristic polynomial

$$\det(P - \lambda I) = \lambda^2 - 1.5\lambda + 0.5 = (\lambda - 1)(\lambda - 0.5)$$

 $\Rightarrow \lambda_1 = 1$ and $\lambda_2 = 0.5$ are the eigenvalues. The eigenspaces are

$$E_1 = span(\begin{bmatrix} 2\\ 3 \end{bmatrix}), \quad E_{0.5} = span(\begin{bmatrix} 1\\ -1 \end{bmatrix}).$$

If take we $Q = \begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix}$, we have $Q^{-1}PQ = \begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix} = D$ $\Rightarrow P^k = QD^kQ^{-1} = \begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 1^k & 0 \\ 0 & (0.5)^k \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix}^{-1}$

Now, as $k \longrightarrow \infty$ we have $(0.5)^k \longrightarrow 0$, so

$$P^{k} \longrightarrow \begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} 0.4 & 0.4 \\ 0.6 & 0.6 \end{bmatrix}$$
$$\Rightarrow \text{ check that } \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix} \text{ is the steady state vector of } P$$

Theorem 4.34 Let P be a regular $n \times n$ matrix \overrightarrow{x} the steady state probability vector of P. The for any initial probability vector \overrightarrow{x}_0 the sequence of iterates $\overrightarrow{x}_k = P^k \overrightarrow{x}_0 \longrightarrow \overrightarrow{x}$ as $k \longrightarrow \infty$.

New material

Orthogonality in \mathbb{R}^n

Goal: Generalize what we did in \mathbb{R}^2 and \mathbb{R}^3 .

Remember: We use the dot product and say that \overrightarrow{u} and \overrightarrow{v} are orthogonal if $\overrightarrow{u} \cdot \overrightarrow{v} = 0$

Definition A set of vectors $\{\overrightarrow{v_1}, ..., \overrightarrow{v_k}\}$ in \mathbb{R}^n is called an **orthogonal set if** all pairs of distinct vectors in the set are orthogonal i.e

$$\overrightarrow{v_i} \cdot \overrightarrow{v_j} = 0$$
, whenever $i \neq j$.

Example Show that $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$ is an orthogonal set in \mathbb{R}^3 if

$$\overrightarrow{v_1} = \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \quad \overrightarrow{v_2} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \quad \overrightarrow{v_3} = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}.$$

Solution Just check that $\overrightarrow{v_1} \cdot \overrightarrow{v_2} = 0$, $\overrightarrow{v_1} \cdot \overrightarrow{v_3} = 0$ and $\overrightarrow{v_2} \cdot \overrightarrow{v_3} = 0$.

 $\overrightarrow{v_1} \cdot \overrightarrow{v_2} = 2(0) + 1(1) + (-1)(1) = 0$, and same for the other ones.

Theorem 5.1 If $\{\overrightarrow{v_1}, ..., \overrightarrow{v_k}\}$ is an orthogonal set of **nonzero vectors** in \mathbb{R}^n then **necessarily** $\overrightarrow{v_1}, ..., \overrightarrow{v_k}$ are linearly independent.

Quick Proof Suppose there are scalars $c_1, ..., c_k$ such that

$$c_1 \overrightarrow{v_1} + \dots + c_k \overrightarrow{v_k} = \overrightarrow{0}$$

We wish to show that these scalars are all equal to 0. Let's start with c_1 . Key idea: dot by $\overrightarrow{v_1}$ on both sides in the above equality.

$$(c_1 \overrightarrow{v_1} + \dots + c_k \overrightarrow{v_k}) \cdot \overrightarrow{v_1} = \overrightarrow{0} \cdot \overrightarrow{v_1} = 0$$

But
$$(c_1 \overrightarrow{v_1} + \dots + c_k \overrightarrow{v_k}) \cdot \overrightarrow{v_1} = c_1 \overrightarrow{v_1} \cdot \overrightarrow{v_1} = c_1 |\overrightarrow{v_1}|^2$$
, so we get
 $c_1 |\overrightarrow{v_1}|^2 = 0 \implies c_1 = 0$, (because $|\overrightarrow{v_1}| \neq 0$).

 \Rightarrow Proceeding this way one shows that all c_i are 0.

Definition An **Orthogonal basis** for a subspace W of \mathbb{R}^n is a basis that is also orthogonal.

Example The previous vectors

$$\overrightarrow{v_1} = \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \quad \overrightarrow{v_2} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \quad \overrightarrow{v_3} = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}$$

form an orthogonal basis for \mathbb{R}^3 . Indeed they are linearly independend because orthogonal, and there are 3 vectors.

Theorem 5.2 Let $\{\overrightarrow{v_1}, ..., \overrightarrow{v_k}\}$ be an orthogonal basis of a subspace $W \subset \mathbb{R}^n$ and let \overrightarrow{w} be any vector in W. Then the unique scalars $c_1, ..., c_k$ such that

$$\overrightarrow{w} = c_1 \overrightarrow{v_1} + \dots + c_k \overrightarrow{v_k},$$

are given by the formula

$$c_i = \frac{\overrightarrow{w} \cdot \overrightarrow{v_i}}{\overrightarrow{v_i} \cdot \overrightarrow{v_i}}, \text{ for all } i$$

Example Find the coordinates of $\vec{w} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ in the orthogonal basis

$$\mathcal{B} = \{ \overrightarrow{v_1} = \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \overrightarrow{v_2} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \overrightarrow{v_3} = \begin{bmatrix} 1\\-1\\1 \end{bmatrix} \}$$

Solution: The coordinates are:

$$c_1 = \frac{\overrightarrow{w} \cdot \overrightarrow{v_1}}{\overrightarrow{v_1} \cdot \overrightarrow{v_1}} = \frac{2+2-3}{2+1+1} = \frac{1}{6}$$

Similarly one finds

$$c_2 = \frac{5}{2}, \quad c_3 = \frac{2}{3}$$
$$[\overrightarrow{w}]_{\mathcal{B}} = \begin{bmatrix} 1/6\\5/2\\2/3 \end{bmatrix}$$

So we can write

Definition A set $\{\overrightarrow{v_1}, ..., \overrightarrow{v_k}\}$ of vectors is called an **orthonormal set** if

- 1. it's an orthogonal set and
- 2. all vectors are unit vectors i.e $|\vec{v_i}| = 1$ for every *i*.

An **orthonormal basis** for a subspace W of \mathbb{R}^n is a basis of W that is an orthonormal set.

Example

- 1. The standard basis $\{\overrightarrow{e_1}, ..., \overrightarrow{e_n}\}$ is an orthonormal basis for \mathbb{R}^n .
- 2. We can normalize any orthogonal basis to an orthonormal basis: If $\{\overrightarrow{v_1}, ..., \overrightarrow{v_k}\}$ is an orthogonal basis then we can get an orthonormal basis by divind by the length i.e

$$\overrightarrow{u_i} = \frac{1}{|\overrightarrow{v_i}|} \overrightarrow{v_i}$$

 \Rightarrow What do you get with the previous orthogonal basis \mathcal{B} of \mathbb{R}^3 ?

Thereom 5.3 Let $\{\overrightarrow{q_1}, ..., \overrightarrow{q_k}\}$ be an orthonormal basis for a subspace W of \mathbb{R}^n and let \overrightarrow{w} be any vector in W. Then \overrightarrow{w} can is uniquely written as

$$\overrightarrow{w} = (\overrightarrow{w} \cdot \overrightarrow{q_1})\overrightarrow{q_1} + \dots + (\overrightarrow{w} \cdot \overrightarrow{q_k})\overrightarrow{q_k}$$

 \Rightarrow This is just Theorem 5.2 with the fact that $(\overrightarrow{q_i} \cdot \overrightarrow{q_i}) = 1$.

Orthogonal Matrices

Main Idea: The columns form an orthonormal set (absurd terminology...)

Theorem 5.4 The columns of an $m \times n$ matrix Q form an orthonormal set if and only if

$$Q^T Q = I_n.$$

We are mainly interested to the case when m = n

Definition An $n \times n$ matrix Q whose columns form an orthonormal set is called an orthogonal matrix.

Theorem 5.5 An square matrix Q is orthogonal if and only if $Q^{-1} = Q^T$.

Remark Thanks to this theorem it's **very easy** to compute the inverse of an orthogonal matrix ! :D

Example Show that the following matrices are orthogonal and find their inverses.

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Theorem 5.6 For an $n \times n$ matrix Q, the following statements are equivalent

- 1. Q is orthogonal.
- 2. $|Q\overrightarrow{x}| = |\overrightarrow{x}|$ for every $\overrightarrow{x} \in \mathbb{R}^n$. "Q preserves the length"
- 3. $Q\overrightarrow{x} \cdot Q\overrightarrow{y} = \overrightarrow{x} \cdot \overrightarrow{y}$, for every \overrightarrow{x} and \overrightarrow{y} in \mathbb{R}^n . "Q preserves the dot product"

Switching to the board from here.