
Announcements

1. Quiz 6 covers section 4.4 and Markov chains part of 4.6

2. Read Section 5.0, 5.1,5.2 for Wednesday. Work through recommended home-

work questions.

3. O�ce hours today 11-12 MC 121.

4. Lecture notes (including this page) is available on my webpage:

http://www.math.uwo.ca/~hbacard/teaching.html



Last time

Summary of Diagonalization

Objective: Given an n × n matrix A, we would like to determine whether A

is diagonalizable, and if it is, �nd the invertible matrix P and the diagonal matrix

D such that P−1AP = D. The result may depend upon whether you are working

over R or C.

Steps

⇒ Compute the characteristic polynomial det(A− λI) of A.

⇒ Find the roots of the characteristic polynomial and their algebraic multiplic-

ities by factoring.

⇒ If the algebraic multiplicities don't add up to n, then A is not diagonalizable,

and you can stop. (If you are working over C, this can't happen.)

⇒ For each eigenvalue λ, compute the dimension of the eigenspace Eλ. This is

the geometric multiplicity of λ, and if it is less than the algebraic multiplicity,

then A is not diagonalizable, and you can stop.

⇒ Compute a basis for the eigenspace Eλ.

⇒ If for each eigenvalue the geometric multiplicity equals the algebraic multiplic-

ity, then you take the n eigenvectors you found and put them in the columns

of a matrix P . Put the eigenvalues in the same order on the diagonal of a

matrix D.

⇒ Check that AP = PD.

Computing powers If A is diagonalizable i.e, there is an invertible matrix P

and a diagonal matrix D such that P−1AP = D, then we can compute with less

pain the powers of A.



One writes

P−1AP = D ⇔ A = PDP−1,

and observe that

A2 = (PDP−1)(PDP−1) = PD(P−1P︸ ︷︷ ︸
=I

)DP−1 = PD2P−1

⇒ Pattern:

Ak = PDkP−1

Markov chains (4.6)

Recall: A stochastic matrix is a matrix P = [Pij] such that Pij ≥ 0 and

P1j + P2j + · · · + Pnj = 1, for all j.

⇒ Examples of such are transition matrix P of a Markov chain.

−→x =

x1
...

xn

 is a probability vector if xi ≥ 0 and

x1 + x2 + · · · xn = 1

A probability vector −→x that satis�es P−→x = −→x is called a a steady state vector.

This is exactly the same thing as an eigenvector with eigenvalue 1

4 main Theorems

Theorem 4.30 If P is an n × n transition matrix of a Markov chain, then 1 is

an eigenvalue of P

Theorem 4.31 Let P be an n× n transition matrix.

1. Then every eigenvalue λ has |λ| ≤ 1

2. If P is regular (some power is positive), then all eigenvalues beside λ = 1 have

|λ| < 1



Theorem 4.33 Let P be an n×n stochastic matrix all of whose entries are pos-

itive. Then as k −→∞, P k −→ L, a matrix all of whose columns are equal to the

same vector −→x which is a steady state probability vector for P

Example Let P =

[
0.7 0.2

0.3 0.8

]
. An easy computation give the characteristic poly-

nomial

det(P − λI) = λ2 − 1.5λ + 0.5 = (λ− 1)(λ− 0.5)

⇒ λ1 = 1 and λ2 = 0.5 are the eigenvalues. The eigenspaces are

E1 = span(

[
2

3

]
), E0.5 = span(

[
1

−1

]
).

If take we Q =

[
2 1

3 −1

]
, we have Q−1PQ =

[
1 0

0 0.5

]
= D

⇒P k = QDkQ−1 =

[
2 1

3 −1

] [
1k 0

0 (0.5)k

] [
2 1

3 −1

]−1

Now, as k −→∞ we have (0.5)k −→ 0, so

P k −→
[
2 1

3 −1

] [
1 0

0 0

] [
2 1

3 −1

]−1

=

[
0.4 0.4

0.6 0.6

]

⇒ check that

[
0.4

0.6

]
is the steady state vector of P

Theorem 4.34 Let P be a regular n× n matrix −→x the steady state probability

vector of P . The for any initial probability vector −→x 0 the sequence of iterates
−→x k = P k−→x 0 −→ −→x as k −→∞.



New material

Orthogonality in Rn

Goal: Generalize what we did in R2 and R3.

Remember: We use the dot product and say that −→u and −→v are orthogonal if
−→u · −→v = 0

De�nition A set of vectors {−→v1 , ...,
−→vk} in Rn is called an orthogonal set if all

pairs of distinct vectors in the set are orthogonal i.e

−→vi · −→vj = 0, whenever i 6= j.

Example Show that {−→v1 ,
−→v2 ,
−→v3} is an orthogonal set in R3 if

−→v1 =

 2

1

−1

 , −→v2 =

0

1

1

 , −→v3 =

 1

−1

1

 .
Solution Just check that −→v1 · −→v2 = 0, −→v1 · −→v3 = 0 and −→v2 · −→v3 = 0.

−→v1 · −→v2 = 2(0) + 1(1) + (−1)(1) = 0, and same for the other ones.

Theorem 5.1 If {−→v1 , ...,
−→vk} is an orthogonal set of nonzero vectors in Rn then

necessarily −→v1 , ...,
−→vk are linearly independent.

Quick Proof Suppose there are scalars c1, ..., ck such that

c1
−→v1 + · · · + ck

−→vk =
−→
0 .

We wish to show that these scalars are all equal to 0. Let's start with c1.

Key idea: dot by −→v1 on both sides in the above equality.

(c1
−→v1 + · · · + ck

−→vk ) · −→v1 =
−→
0 · −→v1 = 0



But (c1
−→v1 + · · · + ck

−→vk ) · −→v1 = c1
−→v1 · −→v1 = c1|−→v1 |2, so we get

c1|−→v1 |2 = 0 ⇒ c1 = 0, (because |−→v1 | 6= 0).

⇒ Proceeding this way one shows that all ci are 0. �

De�nition An Orthogonal basis for a subspace W of Rn is a basis that is also

orthogonal.

Example The previous vectors

−→v1 =

 2

1

−1

 , −→v2 =

0

1

1

 , −→v3 =

 1

−1

1


form an orthogonal basis for R3. Indeed they are linearly independend because

orthogonal, and there are 3 vectors.

Theorem 5.2 Let {−→v1 , ...,
−→vk} be an orthogonal basis of a subspaceW ⊂ Rn and

let −→w be any vector in W . Then the unique scalars c1, ..., ck such that

−→w = c1
−→v1 + · · · + ck

−→vk ,

are given by the formula

ci =
−→w · −→vi
−→vi · −→vi

, for all i

Example Find the coordinates of −→w =

1

2

3

 in the orthogonal basis

B = {−→v1 =

 2

1

−1

 ,−→v2 =

0

1

1

 ,−→v3 =

 1

−1

1

}



Solution: The coordinates are:

c1 =
−→w · −→v1
−→v1 · −→v1

=
2 + 2− 3

2 + 1 + 1
=

1

6

Similarly one �nds

c2 =
5

2
, c3 =

2

3
So we can write

[−→w ]B =

1/6

5/2

2/3


De�nition A set {−→v1 , ...,

−→vk} of vectors is called an orthonormal set if

1. it's an orthogonal set and

2. all vectors are unit vectors i.e |−→vi | = 1 for every i.

An orthonormal basis for a subspace W of Rn is a basis of W that is an

orthonormal set.

Example

1. The standard basis {−→e1 , ...,
−→en} is an orthonormal basis for Rn.

2. We can normalize any orthogonal basis to an orthonormal basis:

If {−→v1 , ...,
−→vk} is an orthogonal basis then we can get an orthonormal basis by

divind by the length i.e
−→ui =

1

|−→vi |
−→vi .

⇒ What do you get with the previous orthogonal basis B of R3 ?

Thereom 5.3 Let {−→q1 , ...,−→qk} be an orthonormal basis for a subspace W of Rn

and let −→w be any vector in W . Then −→w can is uniquely written as

−→w = (−→w · −→q1 )−→q1 + · · · + (−→w · −→qk )−→qk .

⇒ This is just Theorem 5.2 with the fact that (−→qi · −→qi ) = 1.



Orthogonal Matrices

Main Idea: The columns form an orthonormal set (absurd terminology...)

Theorem 5.4 The columns of an m×n matrix Q form an orthonormal set if and

only if

QTQ = In.

We are mainly interested to the case when m = n

De�nition An n× n matrix Q whose columns form an orthonormal set is called

an orthogonal matrix.

Theorem 5.5 An square matrix Q is orthogonal if and only if Q−1 = QT .

Remark Thanks to this theorem it's very easy to compute the inverse of an

orthogonal matrix ! :D

Example Show that the following matrices are orthogonal and �nd their inverses.

A =

 0 1 0

0 0 −1

−1 0 0

 , B =

[
cos θ − sin θ

sin θ cos θ

]

Theorem 5.6 For an n× n matrix Q, the following statements are equivalent

1. Q is orthogonal.

2. |Q−→x | = |−→x | for every −→x ∈ Rn. �Q preserves the length�

3. Q−→x ·Q−→y = −→x ·−→y , for every −→x and −→y in Rn. �Q preserves the dot product�

Switching to the board from here.


