
Math 1600A Lecture 34, Section 2, 29 Nov 2013

Announcements:

Today we finish 5.2 and start 5.3. Read Sections 5.3 and 5.4 for Monday. Work through
recommended homework questions.

Tutorials: Next week: review.
Office hour: Monday, 1:30-2:30, MC103B.
Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Final exam: Covers whole course, with an emphasis on the material in Chapters 4 and 5
(after the midterm). Our course will end with Section 5.4.

Question: If , then 

T/F: An orthogonal basis  must have

Review of Section 5.2: Orthogonal Complements and Orthogonal
Projections

We saw in Section 5.1 that orthogonal and orthonormal bases are particularly easy to
work with. In Section 5.3, we will learn how to find these kinds of bases. In this section,
we learn the tools which will be needed in Section 5.3. We will also find a new way to
understand the subspaces associated to a matrix.

Orthogonal Complements

Definition: Let  be a subspace of . A vector  is orthogonal to  if  is
orthogonal to every vector in . The orthogonal complement of  is the set of all

vectors orthogonal to  and is denoted . So

An example to keep in mind is where  is a plane through the origin in  and  is
, where  is the normal vector to .

Theorem 5.9: Let  be a subspace of . Then:

a.  is a subspace of .

b. 

W = Rn = { }W ⊥ 0⃗ 

{ , … , }v ⃗ 1 v ⃗ k

⋅ = {v ⃗ i v ⃗ j
0
1

if i ≠ j

if i = j

W Rn v ⃗ W v ⃗ 
W W

W W ⊥

= { ∈ : ⋅ = 0 for all  in W}W ⊥ v ⃗ Rn v ⃗ w⃗ w⃗ 

W R3 W ⊥

span( )n⃗ n⃗ W

W Rn

W ⊥ Rn

( = WW ⊥)⊥
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c. 

d. If , then  is in  if and only if  for all .

We proved all of these except part (b), which will come today.

Theorem 5.10: Let  be an  matrix. Then

The first two are in  and the last two are in . These are the four fundamental
subspaces of .

Orthogonal projection

Let  be a nonzero vector in , and for any  in  define:

If we write , then  is in ,  is in ,

and . We can do this more generally:

Definition: Let  be a subspace of  and let  be an orthogonal basis
for . For  in , the orthogonal projection of  onto  is the vector

The component of  orthogonal to  is the vector

We will show soon that  is in .

Note that multiplying  by a scalar in the earlier example doesn't change ,  or .
We'll see later that the general definition also doesn't depend on the choice of
orthogonal basis.

New material

Example: Let , where  and . Compute

W ∩ = { }W ⊥ 0⃗ 
W = span( , … , )w⃗ 1 w⃗ k v ⃗ W ⊥ ⋅ = 0v ⃗ w⃗ i i

A m × n

(row(A) = null(A) and (col(A) = null( ))⊥ )⊥
AT

Rn Rm

A

u⃗ Rn v ⃗ Rn

( ) = ( ) .proj u⃗ v ⃗ 
⋅u⃗ v ⃗ 
⋅u⃗ u⃗ 

u⃗ 

( ) = − ( )perp u⃗ v ⃗ v ⃗ proj u⃗ v ⃗ 

W = span( )u⃗ = ( )w⃗ proj u⃗ v ⃗ W = ( )w⃗ ⊥ perp u⃗ v ⃗ W ⊥

= +v ⃗ w⃗ w⃗ ⊥

W Rn { , … , }u⃗ 1 u⃗ k
W v ⃗ Rn v ⃗ W

( ) = ( ) + ⋯ + ( )projW v ⃗ proj u⃗ 1 v ⃗ proj u⃗ k v ⃗ 

v ⃗ W

( ) = − ( )perpW v ⃗ v ⃗ projW v ⃗ 

( )perpW v ⃗ W ⊥

u⃗ W w⃗ w⃗ ⊥

W = span( , )u⃗ 1 u⃗ 2 =u⃗ 1

⎡
⎣
⎢⎢

1
1
0
0

⎤
⎦
⎥⎥ =u⃗ 2

⎡
⎣
⎢⎢

0
0
1
1

⎤
⎦
⎥⎥
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 and , where . On whiteboard.

In the previous example,  is in . This is always the case. On whiteboard.

Now we will see that  and  don't depends on the choice of orthogonal basis.
Here and in the rest of the section, we assume that every subspace has at least one
orthogonal basis.

Theorem 5.11: Let  be a subspace of  and let  be a vector in . Then there are

unique vectors  in  and  in  such that .

Proof: We saw above that such a decomposition exists, by taking  and

, using an orthogonal basis for .

We now show that this decomposition is unique. So suppose  is another

such decomposition. Then , so

The left hand side is in  and the right hand side is in  (why?), so both sides must

be zero (why?). So  and .

Note that  is an operation on subspaces, but is not an operation on vectors.

Now we can prove part (b) of Theorem 5.9.

Corollary 5.12: If  is a subspace of , then .

Proof: If  is in  and  is in , then . This means that  is in .

So .

We need to show that every vector in  is in . So let  be a vector in .

By the previous result, we can write  as , where  is in  and  is in .
Then

So  and  is in .

This next result is related to the Rank Theorem:

( )projW v ⃗ ( )perpW v ⃗ =v ⃗ 
⎡
⎣
⎢⎢

1
3
2
4

⎤
⎦
⎥⎥

( )perpW v ⃗ W ⊥

proj perp

W Rn v ⃗ Rn

w⃗ W w⃗ ⊥ W ⊥ = +v ⃗ w⃗ w⃗ ⊥

= ( )w⃗ projW v ⃗ 
= ( )w⃗ ⊥ perpW v ⃗ W

= +w⃗ w⃗ 1 w⃗ ⊥1
+ = +w⃗ w⃗ ⊥ w⃗ 1 w⃗ ⊥1

− = −w⃗ w⃗ 1 w⃗ ⊥1 w⃗ ⊥

W W ⊥

=w⃗ w⃗ 1 =w⃗ ⊥ w⃗ ⊥1 □

⊥

W Rn ( = WW ⊥)⊥

w⃗ W x⃗ W ⊥ ⋅ = 0w⃗ x⃗ w⃗ (W ⊥)⊥

W ⊆ (W ⊥)⊥

(W ⊥)⊥
W v ⃗ (W ⊥)⊥

v ⃗ +w⃗ w⃗ ⊥ w⃗ W w⃗ ⊥ W ⊥

0 = ⋅ = ( + ) ⋅v ⃗ w⃗ ⊥ w⃗ w⃗ ⊥ w⃗ ⊥

= ⋅ + ⋅ = 0 + ⋅ = ⋅w⃗ w⃗ ⊥ w⃗ ⊥ w⃗ ⊥ w⃗ ⊥ w⃗ ⊥ w⃗ ⊥ w⃗ ⊥

=w⃗ ⊥ 0⃗ =v ⃗ w⃗ W □
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Theorem 5.13: If  is a subspace of , then

Proof: Let  be an orthogonal basis of  and let  be an

orthogonal basis of . Then  is an orthogonal basis for .
(Explain.) The result follows.

Example: For  a plane in , .

The Rank Theorem follows if we take , since then :

Corollary 5.14 (The Rank Theorem, again): If  is an  matrix, then

Note: The logic here can be reversed. We can use the rank theorem to prove Theorem
5.13, and Theorem 5.13 can be used to prove Corollary 5.12.

Section 5.3: The Gram-Schmidt Process and the QR Factorization

The Gram-Schmidt Process

This is a fancy name for a way of converting a basis into an orthogonal or orthonormal
basis. And it's pretty clear how to do it, given what we know.

Example: Let  where  and . Find an

orthogonal basis for .

Solution: Ideas? Do on whiteboard.

Question: What if we had a third basis vector ?

Theorem 5.15 (The Gram-Schmidt Process): Let  be a basis for a
subspace  of . Write , , ,

. Define:

W Rn

dim W + dim = nW ⊥

{ , … , }u⃗ 1 u⃗ k W { , … , }v ⃗ 1 v ⃗ ℓ
W ⊥ { , … , , , … , }u⃗ 1 u⃗ k v ⃗ 1 v ⃗ ℓ Rn

□

W R3 2 + 1 = 3

W = row(A) = null(A)W ⊥

A m × n

rank(A) + nullity(A) = n

W = span( , )x⃗ 1 x⃗ 2 =x⃗ 1
⎡
⎣

1
1
0

⎤
⎦ =x⃗ 2

⎡
⎣

−2
0
1

⎤
⎦

W

x⃗ 3

{ , … , }x⃗ 1 x⃗ k
W Rn = span( )W1 x⃗ 1 = span( , )W2 x⃗ 1 x⃗ 2 …

= span( , … , )Wk x⃗ 1 x⃗ k
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Then for each ,  is an orthogonal basis for . In particular, 
is an orthogonal basis for .

Explain verbally.

v ⃗ 1

v ⃗ 2

v ⃗ 3

v ⃗ k

= x⃗ 1

= ( ) = −perpW1
x⃗ 2 x⃗ 2

⋅v ⃗ 1 x⃗ 2
⋅v ⃗ 1 v ⃗ 1

v ⃗ 1

= ( ) = − −perpW2
x⃗ 3 x⃗ 3

⋅v ⃗ 1 x⃗ 3
⋅v ⃗ 1 v ⃗ 1

v ⃗ 1
⋅v ⃗ 2 x⃗ 3
⋅v ⃗ 2 v ⃗ 2

v ⃗ 2

⋮

= ( ) = − − ⋯ −perpWk−1
x⃗ k x⃗ k

⋅v ⃗ 1 x⃗ k
⋅v ⃗ 1 v ⃗ 1

v ⃗ 1
⋅v ⃗ k−1 x⃗ k

⋅v ⃗ k−1 v ⃗ k−1
v ⃗ k−1

i { , … , }v ⃗ 1 v ⃗ i Wi { , … , }v ⃗ 1 v ⃗ k
W = Wk
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