
Math 1600A Lecture 35, Section 2, 2 Dec 2013

Announcements:

Today we finish 5.3 and start 5.4. Read Section 5.4 for Wednesday. Work through
recommended homework questions.

Tutorials: This week: review.
Office hour: Monday, 1:30-2:30, MC103B.
Help Centers: Monday-Friday 2:30-6:30 in MC 106.
Review Session: Friday in class; bring questions.

Final exam: Covers whole course, with an emphasis on the material in Chapters 4 and 5
(after the midterm). Our course will end with Section 5.4.

Review of Section 5.2: Orthogonal Complements and Orthogonal
Projections

Orthogonal Complements

Definition: Let  be a subspace of . A vector  is orthogonal to  if  is
orthogonal to every vector in . The orthogonal complement of  is the set of all

vectors orthogonal to  and is denoted . So

Orthogonal projection

Definition: Let  be a subspace of  and let  be an orthogonal basis
for . For  in , the orthogonal projection of  onto  is the vector

The component of  orthogonal to  is the vector

We showed that  is in  and  is in .

Here and in the rest of Section 5.2, we assume that every subspace has at least one
orthogonal basis.

Theorem 5.11: Let  be a subspace of  and let  be a vector in . Then there are

W Rn v ⃗ W v ⃗ 
W W

W W ⊥

= { ∈ : ⋅ = 0 for all  in W}W ⊥ v ⃗ Rn v ⃗ w⃗ w⃗ 

W Rn { , … , }u⃗ 1 u⃗ k
W v ⃗ Rn v ⃗ W

( ) = ( ) + ⋯ + ( )projW v ⃗ proj u⃗ 1 v ⃗ proj u⃗ k v ⃗ 

v ⃗ W

( ) = − ( )perpW v ⃗ v ⃗ projW v ⃗ 

( )projW v ⃗ W ( )perpW v ⃗ W ⊥

W Rn v ⃗ Rn
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unique vectors  in  and  in  such that .

Theorem 5.13: If  is a subspace of , then

The Rank Theorem follows if we take , since then .

Section 5.3: The Gram-Schmidt Process and the QR Factorization

The Gram-Schmidt Process

This is a fancy name for a way of converting a basis into an orthogonal or orthonormal
basis. And it's pretty clear how to do it, given what we know.

Theorem 5.15 (The Gram-Schmidt Process): Let  be a basis for a
subspace  of . Write , , ,

. Define:

Then for each ,  is an orthogonal basis for . In particular, 
is an orthogonal basis for .

New material

Notes: To compute  you have to use the orthogonal basis of 's that you have

constructed already, not the original basis of 's.

The basis you get depends on the order of the vectors you start with. You should always
do a question using the vectors in the order given, since that order will be chosen to
minimize the arithmetic.

If you are asked to find an orthonormal basis, normalize each  at the end. (It is correct

to normalize earlier, but can be messier.)

w⃗ W w⃗ ⊥ W ⊥ = +v ⃗ w⃗ w⃗ ⊥

W Rn

dim W + dim = nW ⊥

W = row(A) = null(A)W ⊥

{ , … , }x⃗ 1 x⃗ k
W Rn = span( )W1 x⃗ 1 = span( , )W2 x⃗ 1 x⃗ 2 …

= span( , … , )Wk x⃗ 1 x⃗ k

v ⃗ 1

v ⃗ 2

v ⃗ 3

v ⃗ k

= x⃗ 1

= ( ) = −perpW1
x⃗ 2 x⃗ 2

⋅v ⃗ 1 x⃗ 2
⋅v ⃗ 1 v ⃗ 1

v ⃗ 1

= ( ) = − −perpW2
x⃗ 3 x⃗ 3

⋅v ⃗ 1 x⃗ 3
⋅v ⃗ 1 v ⃗ 1

v ⃗ 1
⋅v ⃗ 2 x⃗ 3
⋅v ⃗ 2 v ⃗ 2

v ⃗ 2

⋮

= ( ) = − − ⋯ −perpWk−1
x⃗ k x⃗ k

⋅v ⃗ 1 x⃗ k
⋅v ⃗ 1 v ⃗ 1

v ⃗ 1
⋅v ⃗ k−1 x⃗ k

⋅v ⃗ k−1 v ⃗ k−1
v ⃗ k−1

i { , … , }v ⃗ 1 v ⃗ i Wi { , … , }v ⃗ 1 v ⃗ k
W = Wk

perpWi
v ⃗ j

x⃗ j

v ⃗ j
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Example 5.13: Apply Gram-Schmidt to construct an orthogonal basis for the subspace

 of  where

On whiteboard, scaling intermediate results. We get

If we want an orthonormal basis, we scale these:

Note: You don't need to check that the starting vectors are linearly independent. If they

are dependent, then one or more of the 's will be , and you can just ignore it.

Example: Is  in ?

Solution: We can compute that , so the

answer is no.

Example: Compute the projection of  onto .

Solution: We use that . So, by the work done for the

previous example, we get . (Do not try to work directly with  and .)

W = span( , , )x⃗ 1 x⃗ 2 x⃗ 3 R4

= , = , =x⃗ 1

⎡
⎣
⎢⎢

1
−1
−1

1

⎤
⎦
⎥⎥ x⃗ 2

⎡
⎣
⎢⎢

2
1
0
1

⎤
⎦
⎥⎥ x⃗ 3

⎡
⎣
⎢⎢

2
2
1
2

⎤
⎦
⎥⎥

= , = , =v ⃗ 1

⎡
⎣
⎢⎢

1
−1
−1

1

⎤
⎦
⎥⎥ v ⃗ ′2

⎡
⎣
⎢⎢

3
3
1
1

⎤
⎦
⎥⎥ v ⃗ ′3

⎡
⎣
⎢⎢

−1
0
1
2

⎤
⎦
⎥⎥

= = , = = , = =q ⃗ 1
1

∥ ∥v ⃗ 1
v ⃗ 1

1
2

⎡
⎣
⎢⎢

1
−1
−1

1

⎤
⎦
⎥⎥ q ⃗ 2

1
∥ ∥v ⃗ ′2

v ⃗ ′2
1
20−−√

⎡
⎣
⎢⎢

3
3
1
1

⎤
⎦
⎥⎥ q ⃗ 3

1
∥ ∥v ⃗ ′3

v ⃗ ′3
1
6√

⎡
⎣
⎢⎢

−1
0
1
2

⎤
⎦
⎥⎥

v ⃗ j 0⃗ 

=w⃗ 
⎡
⎣
⎢⎢

8
−2

2
0

⎤
⎦
⎥⎥ W

( ) = 2 + − =projW w⃗ v ⃗ 1 v ⃗ ′2 v ⃗ ′3

⎡
⎣
⎢⎢

6
1

−2
1

⎤
⎦
⎥⎥

=w⃗ 
⎡
⎣
⎢⎢

8
−2

2
0

⎤
⎦
⎥⎥ span( , )x⃗ 1 x⃗ 2

span( , ) = span( , )x⃗ 1 x⃗ 2 v ⃗ 1 v ⃗ ′2
2 +v ⃗ 1 v ⃗ ′2 x⃗ 1 x⃗ 2
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Example 5.14: Find an orthogonal basis for  that contains the vector .

Solution: Choose any two vectors  and  so that  is a basis for .
For example, you can take

Then apply Gram-Schmidt, using the vectors in that order, so  doesn't change.
(Details in text.)

QR Factorization

Theorem 5.16: Let  be an  matrix with linearly independent columns. Then
 can be factored as , where  is an  matrix with orthonormal columns

and  is an invertible upper triangular  matrix.

Note that we must have . (Why?)

Explanation: Write  for the linearly independent columns of . Apply
Gram-Schmidt to produce orthonormal vectors  with

 for each . Therefore we can find scalars 

such that:

That is,

One can also see that the diagonal entries  are non-zero. (Explain.) Therefore,
 and  is invertible.

R3 =v ⃗ 1
⎡
⎣

1
2
3

⎤
⎦

x⃗ 2 x⃗ 3 { , , }v ⃗ 1 x⃗ 2 x⃗ 3 R3

= and =x⃗ 2
⎡
⎣

0
1
0

⎤
⎦ x⃗ 3

⎡
⎣

0
0
1

⎤
⎦

v ⃗ 1

A m × n
A A = QR Q m × n

R n × n

m ≥ n

, … ,a⃗ 1 a⃗ n A
, … ,q ⃗ 1 q ⃗ n

span( , … , ) = span( , … , )a⃗ 1 a⃗ i q ⃗ 1 q ⃗ i i rij

a⃗ 1
a⃗ 2

a⃗ n

= r11 q ⃗ 1
= +r12 q ⃗ 1 r22 q ⃗ 2

⋮
= + + ⋯ +r1n q ⃗ 1 r2n q ⃗ 2 rnn q ⃗ n

A = [ ⋯ ] = [ ⋯ ] = QRa⃗ 1 a⃗ n q ⃗ 1 q ⃗ n

⎡
⎣
⎢⎢⎢⎢

r11

0

⋮
0

r12

r22

⋮
0

⋯
⋯

⋱
⋯

r1n

r2n

⋮
rnn

⎤
⎦
⎥⎥⎥⎥

rii

det R ≠ 0 R
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Note that .

Example 5.15: Find a QR factorization of .

Solution: The columns of  are the vectors from Example 5.13, so we get the matrix

We want to find  such that . Since the columns of  are orthonormal, we have

. So  and one can compute  by matrix multiplication to
find

(See text for details.) Note that you can save some work, since you know that the entries
below the diagonal must be zero.

Also note that this matrix multiplication is exactly working out the components of 
with respect to the orthonormal basis of 's, using that .

Section 5.4: Orthogonal Diagonalization of Symmetric Matrices

In Section 4.4 we learned all about diagonalizing a square matrix . One of the
difficulties that arose is that a matrix with real entries can have complex eigenvalues. In
this section, we focus on the case where  is a symmetric matrix, and we will show that
the eigenvalues of  are always real and that  is alway diagonalizable!

Recall that a square matrix  is symmetric if .

Examples: , , , .

= ⋅rij q ⃗ i a⃗ j

A =
⎡
⎣
⎢⎢

1
−1
−1

1

2
1
0
1

2
2
1
2

⎤
⎦
⎥⎥

A

Q =

⎡
⎣
⎢⎢⎢⎢

1/2
−1/2
−1/2

1/2

3/ 20−−√
3/ 20−−√
1/ 20−−√
1/ 20−−√

−1/ 6√
0

1/ 6√
2/ 6√

⎤
⎦
⎥⎥⎥⎥

R A = QR Q

Q = IQT A = QR = RQT QT R

R = A = ⋯ =QT
⎡
⎣⎢

2
0
0

1
5√

0

1/2
3 /25√

/26√

⎤
⎦⎥

a⃗ i
q ⃗ j = ⋅rij q ⃗ i a⃗ j

A

A
A A

A = AAT

[ ]1
2

2
3

[ ]3
2

2
3

[ ]1
0

0
3

⎡
⎣

1
2
3

2
4
5

3
5
6

⎤
⎦
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Non-examples: , .

Definition: A square matrix  is orthogonally diagonalizable if there exists an

orthogonal matrix  such that  is a diagonal matrix .

[ ]3
2

−2
3

⎡
⎣

1
5
3

2
4
2

3
5
6

⎤
⎦

A

Q AQQT D
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