
Math 1600A Lecture 7, Section 002

Announcements:

More texts, solutions manuals and packages have arrived!

Read Sections 2.0, 2.1 and 2.2 for next class. Work through recommended
homework questions. Scans of the text up to Section 2.1 are available from the
course home page, but will be removed soon.

Quiz 2 is this week, and will cover the material until the end of Section 1.4.

Office hour: today, 1:30-2:30, MC103B. Also, if you can't make it to my office hours,
feel free to attend Hugo Bacard's office hours, listed on the course home page.

Help Centers Monday-Friday 2:30-6:30 in MC 106.

Partial review of previous lectures:

Recall that  with addition and multiplication taken
modulo . That means that the answer is the remainder after division by .

For example, in , .

 is the set of vectors with  components, each of which is in .

New material

Section 1.4: Applications: Code Vectors (we aren't covering force
vectors)

We're going to study a way to encode data that allows us to detect transmission
errors. Used on CDs, UPC codes, ISBN numbers, credit card numbers, etc.

Example 1.37: Suppose we want to send the four commands "forward", "back",
"left" and "right" as a sequence of 0s and 1s. We could use the following code:

But if there is an error in our transmission, the Mars rover will get the wrong
message and will drive off of a cliff, wasting billions of dollars of taxpayer money

= {0, 1, 2, … , m − 1}Zm

m m

Z10 8 ⋅ 8 = 64 = 4 (mod 10)

Zn
m n Zm

forward = [0, 0], back = [0, 1], left = [1, 0], right = [1, 1].
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(but making for some good NASA jokes).

Here's a more clever code:

If any single bit (binary digit, a 0 or a 1) is flipped during transmission, the Mars
rover will notice the error, since all of the code vectors have an even number of 1s.
It could then ask for retransmission of the command.

This is called an error-detecting code. Note that it is formed by adding a bit to the
end of each of the original code vectors so that the total number of 1s is even.

In vector notation, we replace a vector  with the vector

 such that , where .

Exactly the same idea works for vectors in ; see Example 1.39 in the text.

Note: One problem with the above scheme is that transposition errors are not
detected.

Example 1.40 (UPC Codes): The Univeral Product Code (bar

code) on a product is a vector in , such as

Instead of using  as the check vector, UPC uses

The last digit is chosen so that .

For example, if we didn't know the last digit of , we could compute

and so we would find that we need to take , since .

This detects any single error. The pattern in  was chosen so that it detects many
transpositions, but it doesn't detect when digits whose difference is 5 are
transposed. The problem is that .

Example 1.41 (ISBN Codes): ISBN codes use vectors in . The check vector is
. Because 11 is a prime number, this code detects all

forward = [0, 0, 0], back = [0, 1, 1], left = [1, 0, 1], right = [1, 1, 0].

= [ , , … , ]b ⃗ v1 v2 vn

= [ , , … , , d]v ⃗ v1 v2 vn ⋅ = 0 (mod 2)1⃗ v ⃗ = [1, 1, … , 1]1⃗ 

Zn
3

Z12
10

= [6, 7, 1, 8, 6, 0, 0, 1, 3, 6, 2, 4].u⃗ 

1⃗ 

= [3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1].c ⃗ 

⋅ = 0 (mod 10)c ⃗ u⃗ 

u⃗ 

⋅ [6, 7, 1, 8, 6, 0, 0, 1, 3, 6, 2, d] = ⋯ = 6 + d (mod 10)c ⃗ 

d = 4 6 + 4 = 0 (mod 10)

c ⃗ 

2 ⋅ 5 = 0 (mod 10)

Z10
11

= [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]c ⃗ 
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single errors and all single transposition errors.

Summary: To create a code, you choose  (which determines the allowed digits), 
(the number of digits in a code word), and a check vector . Then the valid
words  are those with . If  ends in a , then you can always choose the
last digit of  to make it valid.

Note: This kind of code can only reliably detect one error, but more sophisticated
codes can detect multiple errors. There are even error-correcting codes, which
can correct multiple errors in a transmission without needing it to be resent. In fact,
you can drill small holes in a CD, and it will still play the entire content perfectly.
We'll learn about these codes later.

Section 2.1: Systems of Linear Equations

Definition: A linear equation in the variables  is an equation that
can be written in the form

where the coefficients  and the constant term  are constants.

Linear equations:

Non-linear equations:

A solution to  is a vector  such that
the equation is true when we substitute . For example,

 is a solution to .

When a linear equation has two unknowns, its solutions form a line in . To

m n
∈c ⃗ Zn

m
v ⃗ ⋅ = 0c ⃗ v ⃗ c ⃗ 1

v ⃗ 

, , … ,x1 x2 xn

+ + ⋯ + = b,a1x1 a2x2 anxn

, … ,a1 an b

2x − 5y = 10, r + s = 0.5t − 2, − − (sin ) = 0.
1
2

x1 2√ x2
π

5
x3

xy + z = 1, + = 2, sin(x) = 0, + z = 16.x2
1 x2

2 2y

+ + ⋯ + = ba1x1 a2x2 anxn [ , … , ]s1 sn

= , … , =x1 s1 xn sn

[10, 2] 2x − 5y = 10

R2
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describe the solutions in parametric form, we can solve for one of the variables in
terms of the other.

For example, for , we can write . If we set  to a

parameter , we get parametric solutions .

The same works when there are  variables: we can solve for one in terms of all of
the others, and get a solution with  parameters.

Systems of linear equations

Definition: A system of linear equations is a finite set of linear equations, each
with the same variables. A solution to the system is a vector that satisfies all of the
equations.

Example:

Is  a solution? How about ? How can we find all solutions? What's
happening geometrically?

Example:

Is  a solution? How about ? How can we find all solutions? What's
happening geometrically?

Example:

Is  a solution? How about ? How can we find all solutions? What's
happening geometrically?

A system is consistent if it has one or more solutions, and inconsistent if it has no
solutions. We'll see later that a consistent system always has either one solution or

2x − 5y = 10 y = x − 22
5 x

t [t, t − 2]2
5

n
n − 1

x + y

−x + y

= 2
= 4

[1, 1] [−1, 3]

x + y

2x + 2y

= 2
= 4

[1, 1] [−1, 3]

x + y

x + y

= 2
= 3

[1, 1] [−1, 3]
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infinitely many.

Solving a system

We started with the system on the left and produced the system on the right:

The system on the right was easy to solve. These two systems are said to be
equivalent because they have exactly the same solutions. (The geometry is
different, though!)

Example: Similarly, a large system such as

is easy to solve, because of its triangular structure. The method is called back
substitution:

So the unique solution is .

Let's see how a general system can be converted into a system with a triangular
form.

Example: We'll solve the system on the left

but to save time, we can write it as the augmented matrix on the right.

x + y

−x + y

= 2,
= 4,

x + y

2y

= 2
= 6

x − y − z

y + 3z

5z

= 2
= 5
= 10

z

y

x

= 2
= 5 − 3z = 5 − 6 = −1
= 2 + y + z = 2 − 1 + 2 = 3.

[3, −1, 2]

x − y − z

3x − 3y + 2z

2x − y + z

= 2
= 16
= 9

⎡
⎣⎢

1
3
2

−1
−3
−1

−1
2
1

2
16
9

⎤
⎦⎥
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Today, we'll show the equations as well.

To put it into triangular form, the first step is to eliminate the s in equations 2 and
3.

Replace row 2 with row 2 - 3(row 1):

Replace row 3 with row 3 - 2(row 1):

Now we can exchange rows 2 and 3, to end up in triangular form:

Hey! This is the system we solved earlier, so now we know that the solution is
.

This system and the original system have exactly the same solutions. Explain.
We say they have the same solution set and therefore that they are equivalent
systems.

x

x − y − z

5z

2x − y + z

= 2
= 10
= 9

⎡
⎣⎢

1
0
2

−1
0

−1

−1
5
1

2
10
9

⎤
⎦⎥

x − y − z

5z

y + 3z

= 2
= 10
= 5

⎡
⎣⎢

1
0
0

−1
0
1

−1
5
3

2
10
5

⎤
⎦⎥

x − y − z

y + 3z

5z

= 2
= 5
= 10

⎡
⎣⎢

1
0
0

−1
1
0

−1
3
5

2
5

10

⎤
⎦⎥

[3, −1, 2]
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