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Appendix A

Exercises A

1. 1, 2, 3, 4 3.

5. none 7.

9. 1, 2 11. none

13.

15. 17.

19. 21.

23. 25.

27. ,

29. ,

31. 33.

35. 37.

39.

,

41. If n is even, then for some integer k. Then

, which is odd.

43. If n is even, then for some integer k and so

, which is even.

If n is odd, then for some integer k and son � 2k � 1

n3 � n � 12k 2 3 �  2k � 214k3 � k 2
n � 2k

3n � 5 � 312k 2 � 5 � 213k � 3 2 � 1

n � 2k

� 10 � 1 � 2 2 � 11 � 0 � 1 2 � 12 � 1 � 0 2 � 8

a
2

j�0

1� �j � � �1 � j � � �2 � j � 2a
2

j�0
a

2

i�0

�i � j � �

� 10 � 1 � 2 2 � 11 � 0 � 1 2 � 12 � 1 � 0 2 � 8

a
2

i�0

1�i � � �i � 1� � �i � 2� 2a
2

i�0
a

2

j�0

�i � j � �

a
n�1

k�1

r k�1
a
11

k�1

13k � 2 2

a
8

k�1

1>2k�1
a
25

k�1

2k

A ´ B � 51, 2, 3, 5, 7, 10, 15, 17, 26, 316A � B � �

A ´ B � 51, 2, 3, 4, 5, 6, 86A � B � 52, 46

A � B � C, D � E 55 n  : n H �6

53n � 2 : n H �65n H � : �n� � 36

5p , �5, �1, 3, 7, p651, 3, 5, 7, p 6
�3, �2, �1, 0, 1, 2, 3, 4, 6

�2, �1, 0, 1, 2, 3

51, 26, 53, 46

, which is even.

45. (By contrapositive) If n is not odd, then n is even.

Thus, for some integer k and so 

, which is odd. Hence 

is not even.

47. (By contradiction) Suppose that is odd but it is

not the case that one of m or n is even and the other is

odd. Then either m and n are both even or they are both

odd. In either case, is even, a contradiction. Con-

clude that one of m or n is even and the other is odd.

49. (By contrapositive) Assume that it is not the case

that both m and n are even. If m and n are both odd,

then is odd; if only one of m or n is even, then

is odd. In either case, it is not the case that 

and are both even.

Assume that both m and n are even. Then clearly

and are both even.

51. If is rational, then it can be written in the form

, where a and b are integers with no common

factors. Then , so and, hence, is

even. Hence, a is even (by Exercise 49 with )

and so for some integer k. But then ,

so and, hence is even. Hence, b is even and 

a and b have a common factor of 2, a contradiction.

Conclude that must be irrational.

Appendix B

Exercises B

1. For , we have . Assume that

. Then1 � 5 � 9 � p � 14k � 3 2 � 2k2 � k
1 � 2 # 12 � 1n � 1

12

b2b2 � 2k2

4k2 � 2b2a � 2k

m � n � a

a2a2 � 2b22 � a2>b2

12 � a>b
12

m � nmn

3 B 4
m � n

mnm � n

mn

31 4

m � n

m � n

3n � 1 312k 2 � 1 � 213k 2 � 1

3n � 1 �n � 2k

� 214k3 � 6k2 � 2k 2
� 8k3 � 12k2 � 4kn3 � n � 12k � 1 2 3 � 12k � 1 2
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.

3. For , we have .

Assume that 

. Then 

.

5. For , we have . Assume that 

. Then 

7. For , we have .

Assume that .
Then 

9. For , is even. Assume that 

is even, so that for some integer m.

Then 

, which is even.

11. For , , which is divisible by 4.

Assume that is divisible by 4, so that 

for some integer m. Then 

,

which is divisible by 4.

13. For , we have . Assume 

that . Then . But, since

, so and hence

. It follows that

.

15. For , we have . Assume that 

. Then 

.

Now 

.

Therefore, . It follows that 

.� 2 � 1
1k�1 2

1
1k�1 2 21 � 1

4 � p �

� 1
1k�1 2

1k�1 2 2�k

k 1k�1 2 2 �
1k�1 2

k 1k�1 2 2

� k1k � 1 2
� k2 � k � 1 � k2 � k1k � 1 2 2�k

a
1k�1 2 2�k

k 1k�1 2 2 b� 2 � 1
k � 1

1k�1 2 2 � 2 �� 1
1k�1 2 2

1 � 1
4 � p � 1

k2� 1
9 � p � 1

k2 � 2�1
k

1 � 1
41 � 2 � 1

1n � 1

2k�1 7 1k � 1 2 2
� 1 � 1k � 1 2 22k2 � k2 � 2k

k2 � 2k � 1k1k�2 2 � 1k � 5

2k�1 � 2 # 2k 7 2k22k 7 k2

25 � 32 7 25 � 52n � 5

� 15�1 25k � 15k�1 2 � 4 # 5k � 4m � 415k � m 2
5k�1�1 � 5k�1�5k � 5k�1

5k�1 � 4m5k�1

50�1 � 1�1 � 0n � 0

21m � k � 1 2
� 2m � 21k � 1 2 �� 1k2 � k 2 � 2k � 2

1k � 1 2 2 � 1k � 1 2 � k2 � 2k � 1 � k � 1

k2 � k � 2m

k2 � k02 � 0 � 0n � 0

1k � 2 2 ! � 1.

11 � 1k � 1 2 2 � 1 � 1k � 1 2 !1k � 2 2 � 1 �
� 1 1k � 1 2 ! � 1 2 � 1k � 1 2 1k � 1 2 ! � 1k � 1 2 !

1k � 1 2 1k � 1 2 !1 # 1! � 2 # 2! � p � k # k! �
� 1k �1 2 ! � 11 # 1! � 2 # 2! � p � k # k!

11 � 1 2 ! � 11 # 1! � 1 � 2 � 1 �n � 1

2 # 2k�1 � 1 � 2k�2 � 1.

4 � p � 2k � 2k�1 � 12k�1 � 1 2 � 2k�1 �

1 � 2 � 4 � 8 � p � 2k � 2k�1�1

1 � 2 �1 � 20�1�1n � 0

1k � 2 2 121k � 1 2 � 1 2 >61k � 1 2
� 1k � 1 2 12k2 � 7k � 6 2 >6 �� 61k � 1 2 2 >6

� 1k � 1 2 1k 12k � 1 212k � 1 2 � 61k � 1 2 2 2 >6
� 1k 1k � 1 2� k1k � 1 2 12k � 1 2 >6 � 1k � 1 2 2

12 � 22 � p � k2 � 1k � 1 2 212k � 1 2 >6
� k 1k � 1 212 � 22 � 32 � p � k2

12 � 1 � 111 � 1 2 12 # 1 � 1 2 >6n � 1

� 1k � 1 2
� 21k2 � 2k � 1 2 � 1k � 1 2 � 21k � 1 2 2
� 14k � 3 2 � 14k � 1 2 � 2k2 � k � 4k � 1

1 � 5 � p � 141k � 1 2 � 3 2 � 1 � 5 � p 17. For , we have . Assume

that . Then 

.

19. For , we have , which is certainly 

divisible by . Assume that is divisible by ,

so that , for some polynomial .

Then 

, which is 

divisible by .

21. For , we have a set with no elements: the empty

set . The only subset of is itself, so has 

subsets. Assume that any set with k elements has 

subsets. Now let S be a set with elements, say

. If , then either 

or . If , then , where

is a subset of by the induction 

hypothesis, there are such subsets. If , then

A is a subset of by the induction 

hypothesis, there are such subsets. It follows that the

total number of subsets of S is , as was

required to be proved.

23. Hint: The basis step is for , in which case we 

have a triangle and the sum of its interior angles is

. Assuming that a convex k-gon has

an interior angle sum of , consider a convex

-gon P. Subdivide P into a triangle and a k-gon.

25.

27. For , we have . Assume that, for all 

integers n such that , n can be factored 

as for some integer and some odd 

integer m. Consider . If is odd, then

is the required factorization. If

is even, then for some integer .

Since , and so .

By the induction hypothesis, for some integer

and some odd integer m. Then 

is the desired factorization.

29. For , we have . Assume that, for

all integers n such that , n can be written as

for some nonnegative integers a and b.

Consider . Since and 

, we may assume that . Hence

and so 

for some nonnegative integers a and b, by the 

induction hypothesis. Then 

, as required.� 13a � 5b 2 � 3 � 31a � 1 2 � 5b
k � 1 � 1k�2 2 � 3

k�2 � 3a � 5b8 � 1k � 1 2�3 � k�2 � k
k � 1 � 11� 5 # 2

10 � 3 # 09 � 3 # 3 � 5 # 0k � 1

n � 3a � 5b

8 � n � k

8 � 3 # 1 � 5 # 1n � 8

� 2i�1m

k � 1 � 2ai � 0

a � 2im

a � 1k � 1 2 >2 � kk � 1 � 2k1 � k

ak � 1 � 2ak � 1

k � 1 � 201k � 1 2
k � 1k � 1

i � 0n � 2im

1 � n � k

1 � 20 # 1n � 1

n> 1n � 1 2 .

1k � 1 2
1k�2 2180�

13�2 2180�180� �

n � 3

2 # 2k�1 � 2k�2

2k

5x1, x2, p , xk6;
xk�1 x A2k

5x1, x2, p , xk6;A¿
A � 5xk�16 ´  A¿xk�1 H Axk�1 x A

xk�1 H AA � SS � 5x1, x2, p , xk, xk�16
2k�1

2k

1 � 20����
n � 0

x�1

� 1x�1 2f1x 2 � 1x�1 2 1xk � f1x 2 2
xk�1�1 � xk�1�xk � xk�1 � 1x�1 2xk

f  1x 2xk�1 � 1x�1 2f1x 2
x�1xk�1x�1

x1�1 � x�1n � 1

� akbkab � akabkb � ak�1bk�1

1ab 2k�1 � 1ab 2k1ab 21ab 2k � akbk
1ab 2 0 � 1 � 1 # 1 � a0b0n � 0
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31.For , we have . Assume

that . Then 

.

33. For , we have . Assume

that . Then 

.

35. For , we have 

. Assume that 

for all . Then 

.

37. For , a board with a square removed is just

a single L-tile. Assume that a with a square re-

moved can be tiled with L-tiles. Consider a 

board with a square removed. Subdivide the board into

four quadrants. One of the quadrants contains

the missing square, so it can be tiled with L-tiles, by the

induction hypothesis. Now place a single L-tile at the

center of the board so that it covers one square in each

of the remaining three quadrants. By the induction hy-

pothesis, the remaining squares in each quadrant can be

tiled with L-tiles, and we are done.

39. For , clearly a single disk can be transferred to a

different peg in move. Assume that a tower of

k disks can be transferred to a different peg in 

moves. Consider a tower of disks on peg A, say. In

order to move it to peg B, we need to move the largest

disk to peg B. To do this, we first must transfer the top k

k � 1

2k�1

1 � 21�1

n � 1

2k

2k � 1

2k

2k
2k � 1

2k

III

III IV

2k � 2k

2k�1 � 2k�1

2k � 2k

2 � 2n � 1

� 1 fm�1fk � fm fk�1 2 � fm�k�1 � fm�k � fm�k�1

fm�11fk�1 � fk 2 � fm1 fk � fk�1 2 � 1fm�1 fk�1 � fm fk 2

fm�1 fk�1 � fm fk�2 �0 � n � k

fm�1fn � fm 
fn�1 � fm�n� fm � fm�0

fm�1f0 � fmf1 � fm�1
# 0 � fm

# 1n � 0

� fk  
fk�1 � f 2

k�1 � fk�11fk � fk�1 2 � fk�1fk�2

� f 2
k�1a a

k

i�0

f 2
i ba

k�1

i�0

f 2
i �a

k

i�0

f 2
i � fk  

fk�1

f 2
0 � 02 � 0 � 0 # 1 � f0 

f1n � 0

� f1k�12�2 � 1

� fk�3 � 1� fk�1 � 1fk�1 � fk�2 2 � 1� f1k�22 �1

a
k�1

i�0

fi � a a
k

i�0

fi b � fk�1a
k

i�0

fi � fk�2�1

f0 � 0 � 1�1 � f2�1n � 0 disks to peg C; this takes moves, by the induction

hypothesis. Now move the largest disk to peg B (1 move)

and then transfer the tower of k disks from peg C to peg

B ( moves). The total number of moves is thus

, as required.

41. The basis step is not true.

Appendix C

Exercises C

1. 3.

5. 7.

9. 11.

13. 15. 5 17. 3

19.

21.

23.

25.

27. 16 29.

31. ;1, ; i, ; 112>2 2  ;  112>2 2 i

16�1613 i

1cos 1p>4 2 � i sin1p>4 2 2
1>z � 112>8 22>12 1cos1p>4 2 � i sin1p>4 2 2 ,

z>w �zw � 8121cos 13p>4 2 � i sin13p>4 2 2 ,

1cos 13p>4 2 � i sin13p>4 2 2
1>z � 112>2 212>12 2  1cos17p>12 2 � i sin17p>12 2 2 ,

z>w �zw � 2121cos 111p>12 2 � i sin111p>12 2 2 ,

21cos 1p>6 2 � i sin 1p>6 2 2

2121cos1�p>4 2 � i sin1�p>4 2 2

10i

�i1
10 � 

13
10i

1
2 � 

1
2i7�4i

13 � 11i8�4i

212k � 1 2 � 1 � 2k�1 � 1

2k�1

2k�1

Answers to Selected Odd-Numbered Exercises 3

Im

�2
i

l
Re

�l

�i

i�2
2 2

�
�2 i�2
2 2

�

�2 i�2
2 2

� �2 i�2
2 2

�
�

�
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33.

35. 37.

39. (a)

(c)

(e) Let . If z is real, then and 

hence Conversely, if , then

. Thus, and so .

Hence is real.

41. (a) From 

we see that 

and .

(c) From 

, we see that 

and 

.

Appendix D

Exercises D

1. polynomial 3. polynomial

5. polynomial for 7. not a polynomial

9. not a polynomial 11. not a polynomial

13. polynomial

15.

� x � 3, f1x 2g1x 2 � 3x3 � 6x2 � x � 2

f 1x 2 � g1x 2 � 3x2 � x � 1, f1x 2 � g1x 2 � �3x2

x 	 0

4cosu sin3u

sin 4u � 4cos3usinu �6 sin2u cos 
2u � sin4u

cos 4u � cos4u �� 4 cos u sin3
 u 2

�i14 cos3u sin u� 1cos 
4

 u � 6 sin2
 u cos 

2
 u � sin4

 u 2

cos 4u � i sin 4u � 1cos u � i sin u 2 4
sin 2u � 2cosu sinucos 2u � cos2

 u � sin2
 u

1cos 
2

 u � sin2
 u 2 � i 12 cos u sin u 2

cos 2u � i sin 2u � 1cos u � i sin u 2 2 �

z � a

b � 02bi � 0a � bi � a�bi

z � zz � a � a � z.

b � 0z � a � bi

� 1a � bi 2  1c � di 2

� 1a � bi 2 1c � di 2� 1ac�bd 2�1ad � bc 2 i
1a � bi 2 1c � di 2 � 1ac�bd 2 � 1ad � bc 2 i
a � bi � a�bi � a � bi

e�i

�3 i1
2 2

Re

Im

�
�3 i1
2 2

��

�i

;13>2 � i>2, �i 17.

19.

21.

23.

25.

27. 29. no rational roots

31. 33.

35.

37. There is one sign change, so p has at most one positive

zero. But and , so there is a 

zero in the interval . Therefore p has exactly one

positive zero.

38. There are no sign changes, so p has no positive zeros.

Since has one sign change,

p has at most one negative zero. We find that 

and so, since , p has exactly one real zero. Since

p has degree 3, p has three zeros altogether. Hence, p has

exactly two complex (nonreal) zeros.

41. There is one sign change so p has at most one positive

zero. Since and , there is a zero in

the interval (0, 1). Since 

also has one sign change, p has at most one negative

zero. From and , we see 

that there is a zero in the interval . Since

, p has exactly two real zeros and so, because p

has degree 4, it must have two complex  (nonreal)

zeros as well.

43. If , then

.

45. First note that makes sense since is not a 

solution of , by Exercise 44(a). Since p is

palindromic of degree , we have 

, so, multi-

plying by , can be rewritten as 

,

or .

It is now enough to prove that is a poly-

nomial of degree n in for all . For

, it is clear. Assume that is a polynomial

of degree n in t, for all . Then ,

where f has degree k, and ,xk�1 � x�1k�12 � g1t 2
xk � x�k � f1t 21 � n � k

xn � x�nn � 1

n � 1t � x � x�1

xn � x�n

a01x
n � x�n 2 � a11x

n�1 � x�1n�12 2 � p � an � 0

a1x
n�1 � p � an � p � a1x

�1n�12 � a0x
�n � 0

a0x
n �p1x 2 � 0x�n

a1x
2n�1 � p � anxn � p � a1x � a0

p1x 2 � a0x
2n �2n

p1x 2 � 0

x � 0x�1

p*1x 2 � an � an�1x � p � a1x
n�1 � a0x

n
p1x 2 � a0 � a1x � p � an�1x

n�1 � anxn

p10 2 	 0

1�1, 0 2
p10 2 � �1p1�1 2 � 8

p1�x 2 � x4 � 5x2 � 3x�1

p11 2 � 2p10 2 � �1

p10 2 	 0

p1�2 2 � 0

p1�x 2 � �2x3 � 3x2 � 4

10, 1 2
p 11 2 � 1p 10 2 � �1

�1, 2, 4 ;  i

�1, ;  12�1>2 ;  15>2

2>5, 2

x 
4 � x 

3 � 3x 
2 � 2x � 2 � 1x 

2 � x � 1 2 1x 
2 � 2 2

2x 
3 � x 

2 � 1x � 2 2 12x2 � 3x � 6 2 � 12

x 
2 � 1x � 1 2 1x�1 2 � 1

� 12x � 1

� x6�12x5 � 11 � 12 2x4 � 2x3 � 11 � 12 2x2

f 1x 2g 1x 2f1x 2 � g1x 2 � x4 � 112 � 1 2x2 � 12x,

f  1x 2 � g1x 2 � x 
4 � 11 � 12 2x2 � 12x � 2,

� x2 � 2, f 1x 2g 1x 2 � x 
4 � 1

f 1x 2 � g 1x 2 � x 
3 � x 

2 � 2x, f 1x 2 � g 1x 2 � �x 
3
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where g has degree . Therefore,

, which is a polynomial in t of degree 

.

47. (a) From 

and � cos1�2p>5 2 � i sin1�2p>5 2a�1 � e�2pi>5

a � e2pi>5 � cos 12p>5 2 � i sin12p>5 2

k � 1

tf1t 2�g1t 2
1x � x�1 2 1xk � x�k 2 � 1xk�1 � x�1k�12 2 �

xk�1 � x�1k�12 �k�1 , we obtain 

.

(c) 115 � 1 2 >4

2 cos12p>5 2

a � a�1 �� cos12p>5 2 � i sin12p>5 2
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