
Math 1600 Lecture 10, Section 2, 26 Sep 2014

Announcements:

Continue reading Section 2.3 for next class. Work through recommended
homework questions.

Office hour: Monday, 3:00-3:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Here is an applet for practicing row reduction.

We aren't covering solving systems over .

Review of Section 2.2, Lecture 9:

Associated to a system of linear equations is an augmented matrix

. We call  the coefficient matrix.

Performing the following elementary row operations on the augmented
matrix doesn't change the solution set:

Exchange two rows.1. 
Multiply a row by a nonzero constant.2. 
Add a multiple of one row to another.3. 

Definition: A matrix is in row echelon form (REF) if it satisfies:

Any rows that are entirely zero are at the bottom.1. 
In each nonzero row, the first nonzero entry (called the leading entry) is
further to the right than any leading entries above it.

2. 

Definition: A matrix is in reduced row echelon form (RREF) if:

It is in row echelon form.1. 
The leading entry in each nonzero row is a 1 (called a leading 1).2. 

Zp

[A ∣ ]b ⃗ A
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Each column containing a leading 1 is zero everywhere else.3. 

Example: Are the following systems in reduced row echelon form (RREF)
and/or row echelon form (REF)?

We can always use the elementary row operations to get a matrix into REF
and RREF:

Row reduction steps: (This technique is crucial for the whole course.)

Find the leftmost column that is not all zeros.a. 
If the top entry is zero, exchange rows to make it nonzero.b. 
It may be convenient to scale this row to make the leading entry into a 1,
or to exchange rows to get a 1 here. For RREF, it is almost always
best to do this now.

c. 

Use the leading entry to create zeros below it, and above it for RREF.d. 
Cover up the row containing the leading entry, and repeat starting from
step (a).

e. 

Note: Row echelon form is not unique, but reduced row echelon form is.

Gaussian elimination: This means to do row reduction on the augmented
matrix until you get to row echelon form, and then use back substitution to
find the solutions.

Gauss-Jordan elimination: This means to do row reduction on the
augmented matrix until you get to reduced row echelon form, and then use
back substitution to find the solutions.

Back substitution: We call the variables corresponding to a column with a
leading entry the leading variables, and the remaining variables the free
variables. We solve for the leading variables in terms of the free variables,
and assign parameters , , etc. to the free variables.
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Definition: For any matrix , the rank of  is the number of nonzero rows
in its row echelon form. It is written . (We'll see later that this is the
same for all row echelon forms of .)

Note: The number of leading variables equals the rank of the coefficient
matrix.

Theorem 2.2: Let  be the coefficient matrix of a linear system with 
variables. If the system is consistent, then

When there are 0 free variables, we have a unique solution.
When there are 1 or more free variables, we have infinitely many
solutions.

Consistency: You can tell whether the system is consistent or inconsistent
from the row echelon form of the augmented matrix:

If one of the rows is zero except for the last entry, then the system is
inconsistent.

1. 

If this doesn't happen, then the system is consistent, and Theorem 2.2
applies.

2. 

Homogeneous Systems

Definition: A system of linear equations is homogeneous if the constant
term in each equation is zero.

Theorem 2.3: A homogeneous system  is always consistent.
Moreover, if there are  equations and  variables and , then the
system has infinitely many solutions.

Note: If  the system may have infinitely many solutions or it may
have only the zero solution.

New material: Section 2.3: Spanning Sets and

A A
rank(A)

A

A n

number of free variables = n − rank(A).

[A ∣ ]0⃗ 
m n m < n

m ≥ n
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Linear Independence

Linear combinations

Recall: A vector  is a linear combination of vectors  if
there exist scalars  (called coefficients) such that

Example: Is  a linear combination of  and ?

That is, can we find scalars  and  such that

Expanding this into components, this becomes a linear system

and we already know how to determine whether this system is consistent:
use row reduction!

The augmented matrix is

This has row echelon form (work omitted)

v ⃗ , , … ,v ⃗ 1 v ⃗ 2 v ⃗ k
, , … ,c1 c2 ck

+ ⋯ + = .c1v ⃗ 1 ckv ⃗ k v ⃗ 
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⎦⎥
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⎦⎥
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⎦⎥⎥

4 of 9



From this, we can already see that the system is consistent, so the answer is
YES.

If we want to find  and , we can use back substitution (maybe first going
to RREF), and we find that  and  is the unique solution. (Do
this at home.)

Example: Is  a linear combination of  and ?

Solution: The augmented matrix

has row echelon form

and so the system is inconsistent and the answer is NO.

Theorem 2.4: A system with augmented matrix  is consistent if and

only if  is a linear combination of the columns of .

This gives a different geometrical way to understand the solutions to a
system. For example, consider the following system from Lecture 7:
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⎦⎥⎥

[A ∣ ]b ⃗ 

b ⃗ A
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We already know that we can interpret this as finding the point of

intersection of two lines in , and so in this case we get a unique solution
( , ).

But we can also interpret this as writing  as a linear combination of

 and , which has a different geometric interpretation.

Update figure

Update figure

x + y

−x + y

= 2

= 4

R2

x = −1 y = 3
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x = 2, y = 0 and other solutions
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Consider also these systems:

Show all

Spanning Sets of Vectors

Definition: If  is a set of vectors in , then the set of all
linear combinations of  is called the span of  and is
denoted  or .

If , then  is called a spanning set for .

Example: The vectors  and  are a spanning set for

, since for any vector  we have

x + 2y

x + 2y

= 2

= 3

x [ ] + y [ ] = [ ]1
1

2
2

2
3

No solution

x − y

2x − 2y

= 2

= 4

x + 2y

x + 2y

= 2

= 3

S = { , … , }v ⃗ 1 v ⃗ k Rn

, … ,v ⃗ 1 v ⃗ k , … ,v ⃗ 1 v ⃗ k
span( , … , )v ⃗ 1 v ⃗ k span(S)

span(S) = Rn S Rn

= [ ]e ⃗ 1
1
0

= [ ]e ⃗ 2
0
1

R2 = [ ]x⃗ 
a

b

a [ ] + b [ ] = [ ] .
1
0

0
1

a

b
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Another way to see this is that the augmented matrix associated to , 
and  is

which is already in RREF and is consistent.

Similarly, the standard unit vectors in  are a spanning set for .

Example: Find the span of .

Solution: The span consists of every vector  that can be written as
 for some scalar . So it is the line through the origin with direction

vector .

Example: Find the span of  and .

Solution: The span consists of every vector  that can be written as

for some scalars  and . Since  and  are not parallel, this is the plane

through the origin in  with direction vectors  and .

Example: What is the span of  and ? They are not parallel, so

intuitively their linear combinations should fill out all of . We'll show how
to see this algebraically, by row reducing the augmented matrix

e ⃗ 1 e ⃗ 2
x⃗ 
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Note: The word "span" is really just a fancy way of saying "all linear
combinations of these vectors".

Question: What is ? What is ?

Question: We saw that . What is

?

Question: What vector is always in ?

Question: Find some vectors that span .

Question: Find some vectors that span .

span([ ])
1
2

span([ ] , [ ])
1
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4

span([ ] , [ ]) =
1
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0
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x

y
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