
Math 1600 Lecture 11, Section 2, 29 Sep 2014

Announcements:

Read Section 2.4 for next class, but just the parts on network flow and
electrical networks. We aren't covering the rest. Work through
recommended homework questions.

Quiz 3 is this week, and will cover the material until the end of Section 2.3.

Office hour: today, 3:00-3:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Partial review of Lecture 10:

Linear combinations

Definition: A vector  is a linear combination of vectors  if
there exist scalars  (called coefficients) such that

Example: Is  a linear combination of  and ?

That is, can we find scalars  and  such that

Expanding this into components, this becomes a linear system

v ⃗ , , … ,v ⃗ 1 v ⃗ 2 v ⃗ k
, , … ,c1 c2 ck

+ ⋯ + = .c1v ⃗ 1 ckv ⃗ k v ⃗ 

⎡
⎣⎢

4
8
6

⎤
⎦⎥

⎡
⎣⎢

4
5
6

⎤
⎦⎥

⎡
⎣⎢

2
1
3

⎤
⎦⎥

x y

x + y = ?
⎡
⎣⎢

4
5
6

⎤
⎦⎥

⎡
⎣⎢

2
1
3

⎤
⎦⎥

⎡
⎣⎢

4
8
6

⎤
⎦⎥
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and we already know how to determine whether this system is consistent:
use row reduction!

Theorem 2.4: A system with augmented matrix  is consistent if and

only if  is a linear combination of the columns of .

This gives a different geometrical way to understand the solutions to a
system.

Spanning Sets of Vectors

Definition: If  is a set of vectors in , then the set of all
linear combinations of  is called the span of  and is
denoted  or .

If , then  is called a spanning set for .

Example: .

Example: The span of  and  consists of every vector

 that can be written as

for some scalars  and . Since  and  are not parallel, this is the plane

through the origin in  with direction vectors  and .

with augmented matrix
4x + 2y

5x + y

6x + 3y

= 4

= 8

= 6

⎡
⎣⎢⎢

4
5
6

2
1
3

4
8
6

⎤
⎦⎥⎥

[A ∣ ]b ⃗ 

b ⃗ A

S = { , … , }v ⃗ 1 v ⃗ k Rn

, … ,v ⃗ 1 v ⃗ k , … ,v ⃗ 1 v ⃗ k
span( , … , )v ⃗ 1 v ⃗ k span(S)

span(S) = Rn S Rn

span( , , … , ) =e ⃗ 1 e ⃗ 2 e ⃗ n Rn

=u⃗ 
⎡
⎣⎢

1
2
3

⎤
⎦⎥ =v ⃗ 

⎡
⎣⎢

4
5
6

⎤
⎦⎥

x⃗ 

= s + tx⃗ u⃗ v ⃗ 

s t u⃗ v ⃗ 
R3 u⃗ v ⃗ 
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Example: The line  is spanned by .

Question: What vector is always in

?

Example: The line  is not the

span of any set of vectors. 1 2 3-1

1

2

Example: We saw that  and  are both equal

to the line through the origin with direction vector , since

.

New material: Section 2.3: Spanning Sets and Linear
Independence

Linear Dependence and Independence

Suppose that we have vectors ,  and  in  such that

. This can be solved for any of the vectors in terms of the
others, e.g. . This means that .
For example,

So it is redundant to include . We'd like to be able to determine when our
spanning sets have too many vectors.

Definition: A set of vectors  is linearly dependent if there are

{ ∣ x ∈ R}
⎡
⎣⎢

x

2x

3x

⎤
⎦⎥

⎡
⎣⎢

1
2
3

⎤
⎦⎥

span( , , … ,v ⃗ 1 v ⃗ 2 v ⃗ k)

{[ ] ∣ y = x/2 + 1}
x

y

span([ ])
1
2

span([ ] , [ ])
1
2

2
4

[ ]1
2

[ ] = 2 [ ]2
4

1
2

u⃗ v ⃗ w⃗ Rn

+ 3 − 2 =u⃗ v ⃗ w⃗ 0⃗ 
= −3 + 2u⃗ v ⃗ w⃗ span( , , ) = span( , )u⃗ v ⃗ w⃗ v ⃗ w⃗ 

a + b + cu⃗ v ⃗ w⃗ = a(−3 + 2 ) + b + cv ⃗ w⃗ v ⃗ w⃗ 

= (−3a + b) + (2a + c)v ⃗ w⃗ 

u⃗ 

, … ,v ⃗ 1 v ⃗ k
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scalars , at least one of which is nonzero, such that

Since at least one of the scalars is non-zero, the corresponding vector can
be expressed as a linear combination of the others.

Example: , so the vectors ,

 and  are linearly dependent.

Note that either of the first two can be expressed as a linear combination of
the other, but the third one is not a linear combination of the first two.

Example: Are the vectors  and  linearly dependent?

Solution: If  and , then , which is not

possible. Similarly, if , then  is a multiple of . So the only way to

have  is with .

Theorem 2.5: The vectors  are linearly dependent if and only if
at least one of them can be expressed as a linear combination of the others.

Proof: We've seen one direction. For the other, if

, then , so the
vectors are linearly dependent. The same argument works if it is a different
vector that can be expressed in terms of the others.

Example: Are the vectors ,  and  linearly dependent?

Solution: They are linearly dependent, since

, … ,c1 ck

+ ⋯ + = .c1v ⃗ 1 ckv ⃗ k 0⃗ 

[ ] − 2 [ ] + 0 [ ] = [ ]−2
4

−1
2

5
6

0
0

[ ]−2
4

[ ]−1
2

[ ]5
6

= [ ]e ⃗ 1
0
1

= [ ]e ⃗ 2
1
0

c + d =e ⃗ 1 e ⃗ 2 0⃗ c ≠ 0 = −e ⃗ 1 d
c

e ⃗ 2
d ≠ 0 e ⃗ 2 e ⃗ 1

c + d =e ⃗ 1 e ⃗ 2 0⃗ c = d = 0

, … ,v ⃗ 1 v ⃗ k

= + ⋯ +v ⃗ k c1v ⃗ 1 ck−1v ⃗ k−1 + ⋯ + − =c1v ⃗ 1 ck−1v ⃗ k−1 v ⃗ k 0⃗ 

e ⃗ 1 e ⃗ 2 [ ]0
0

0 [ ] + 0 [ ] + 1 [ ] = [ ] .
1
0

0
1

0
0

0
0
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Fact: Any set of vectors containing the zero vector is linearly dependent.

Definition: A set of vectors  is linearly independent if it is not
linearly dependent.

Another way to say this is that the system

has only the trivial solution . (The book calls this
Theorem 2.6.)

This is something we know how to figure out! Use row reduction!

Example: Are the vectors ,  and 

linearly independent?

That is, does the system

have only the trivial solution?

The augmented matrix is

So what's the answer? There are 3 variables and 2 leading variables (the
rank is 2), so there is one free variable, which means there are non-trivial
solutions. Therefore, the vectors are linearly dependent.

, … ,v ⃗ 1 v ⃗ k

+ ⋯ + = .c1v ⃗ 1 ckv ⃗ k 0⃗ 

= ⋯ = = 0c1 ck

=u⃗ 
⎡
⎣⎢

−1
3
2

⎤
⎦⎥ =v ⃗ 

⎡
⎣⎢

2
1
1

⎤
⎦⎥ =w⃗ 

⎡
⎣⎢

6
−4
−2

⎤
⎦⎥

+ + =c1

⎡
⎣⎢

−1
3
2

⎤
⎦⎥ c2

⎡
⎣⎢

2
1
1

⎤
⎦⎥ c3

⎡
⎣⎢

6
−4
−2

⎤
⎦⎥ 0⃗ 

which row reduces to
⎡
⎣⎢⎢

−1
3
2

2
1
1

6
−4
−2

0
0
0

⎤
⎦⎥⎥

⎡
⎣⎢⎢

−1
0
0

2
1
0

6
2
0

0
0
0

⎤
⎦⎥⎥
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Example: Are the vectors ,  and 

linearly independent?

That is, does the system

have only the trivial solution?

The augmented matrix is

So what's the answer? There are 3 variables and 3 leading variables (the
rank is 3), so there are no free variables, which means there is only the
trivial solution. Therefore, the vectors are linearly independent.

Example 2.24: Are the standard unit vectors  in  linearly
independent?

Solution: The augmented matrix is

with  rows and  variables. The rank is , so there is only the trivial

=u⃗ 
⎡
⎣⎢

−1
3
2

⎤
⎦⎥ =v ⃗ 

⎡
⎣⎢

2
1
1

⎤
⎦⎥ =w⃗ 

⎡
⎣⎢

6
−4

3

⎤
⎦⎥

+ + =c1

⎡
⎣⎢

−1
3
2

⎤
⎦⎥ c2

⎡
⎣⎢

2
1
1

⎤
⎦⎥ c3

⎡
⎣⎢

6
−4

3

⎤
⎦⎥ 0⃗ 

which row reduces to
⎡
⎣⎢⎢

−1
3
2

2
1
1

6
−4

3

0
0
0

⎤
⎦⎥⎥

⎡
⎣⎢⎢

−1
0
0

2
1
0

6
2
1

0
0
0

⎤
⎦⎥⎥

, … ,e ⃗ 1 e ⃗ n Rn

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

1
0
0

⋮
0

0
1
0

0

0
0
1

⋯

⋯
⋯
⋯

1

0
0
0

0
0

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥
n n n
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solution. So the standard unit vectors are linearly independent.

Note: You can sometimes see by inspection that some vectors are linearly
dependent, e.g. if one of them is the zero vector, or if one is a scalar
multiple of another. Here's one other situation:

Theorem 2.8: If , then any set of  vectors in  is linearly
dependent.

Proof: The system is a homogeneous system with  variables and 
equations. By Theorem 2.3, a homogeneous system with more variables
than equations always has a non-trivial solution.

Example: The vectors  must be linearly dependent. No

work required, unless you want to know how they are dependent.

Above we put vectors into the columns of a matrix in order to determine
whether they are linearly dependent. There is an alternate approach,
putting the vectors into the rows.

Example like 2.25: Consider the same three vectors we used earlier, this
time written as row vectors: ,  and

. Let's row reduce the matrix that has these vectors as
rows, giving new names to the new rows:

We got a zero row at the end, so we find that

m > n m Rn

m n

[ ] , [ ] , [ ]1
2

3
4

5
6

= [−1, 3, 2]u⃗ = [2, 1, 1]v ⃗ 
= [6, −4, −2]w⃗ 

⎡
⎣⎢

−1
2
6

3
1

−4

2
1

−2

⎤
⎦⎥− →−−−−−−−−−−−

= + 2R′
2 R2 R1

= + 6R′
3 R3 R1

− →−−−−−−−−−−−
= − 2R′′

3 R′
3 R′

2

⎡
⎣⎢

−1
0
0

3
7

14

2
5

10

⎤
⎦⎥

⎡
⎣⎢

−1
0
0

3
7
0

2
5
0

⎤
⎦⎥
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which shows that the original row vectors are linearly dependent. This works
in general:

Theorem 2.7: Let  be row vectors in , and let  be the
 matrix whose rows are these vectors. Then  are

linearly dependent if and only if .

Proof: Suppose that the rank of  is less than . Then some sequence of
row operations will produce a zero row in . As in the example above, this
means that you can write the zero vector as a linear combination of the
original rows. One can show that the coefficients won't all be zero, so it
follows that the vectors are linearly dependent.

On the other hand, if the vectors are linearly dependent, then one of them
can be written as a linear combination of the others. For example, suppose

. Then if you do the row operations
, , , you will produce a zero row. So the

rank of  must be less than . The same idea works if a different vector is
a linearly combination of the others.

Normally the method of putting the vectors in the columns (Theorem 2.5) is
used, but for certain questions, the row method is important.

Question: Do the vectors  and  span ? If not, find

a vector not in their span.

Question: Are the same two vectors linearly independent?

Question: Suppose that the rows of an  matrix  are linearly
independent. What can you say about the rank of ?

=0⃗ R′′
3 = − 2R′

3 R′
2

= ( + 6 ) − 2( + 2 )R3 R1 R2 R1

= 2 − 2 + = 2 − 2 +R1 R2 R3 u⃗ v ⃗ w⃗ 

, , … ,v ⃗ 1 v ⃗ 2 v ⃗ m Rn A
m × n , , … ,v ⃗ 1 v ⃗ 2 v ⃗ m

rank(A) < m

A m
A

= + + ⋯ +v ⃗ m c1v ⃗ 1 c2v ⃗ 2 cm−1v ⃗ m−1
−Rm c1R1 … −Rm cm−1Rm−1

A m
□

=u⃗ 
⎡
⎣⎢

1
1
2

⎤
⎦⎥ =v ⃗ 

⎡
⎣⎢

2
1
3

⎤
⎦⎥ R3

m × n A
A
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Question: Suppose that the columns of an  matrix  are linearly
independent. What can you say about the rank of ?

The intuition behind linear dependence:

Linear dependence captures the idea that there is redundancy in the set of
vectors: a smaller set will have the same span. Put another way, the vectors
will span something smaller than you expect:

Typically, two vectors will span a plane; but if one is a multiple of the other
one, then they will only span a line.

Typically, three vectors in  will span all of ; but if one is a linear
combination of the others, then they will span a plane (or something
smaller).

Typically, one vector spans a line. But if it is the zero vector, its span
consists of only the origin.

m × n A
A

R3 R3
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