
Math 1600 Lecture 15, Section 2, 8 Oct 2014

Announcements:

Read Section 3.3 for next class (Friday). This is core material. But we don't cover
the part about elementary matrices. Work through recommended homework
questions.

Quiz 4 is this week, and will focus on the material in Section 2.4 (networks) and
the parts of 3.1 and 3.2 we finished Monday.

Midterm: Saturday, October 25, 7-10pm. Rooms on course web page. Contact me
now about conflicts, and get counsellor approval.

Office hour: today, 11:30-noon, MC103B. Next Monday's office hour moved to
Tuesday, 1:30-2:00.

Help Centers: Monday-Friday 2:30-6:30 in MC 106.

Partial review of Lectures 13 and 14:

Matrix multiplication

Definition: If  is  and  is , then the product  is the 
matrix whose  entry is

To remember the shape of :

Note: In particular, if  is a column vector in , then  is a column vector in
. So one thing a matrix  can do is transform column vectors into column

vectors. This point of view will be important later.

For the most part, matrix multiplication behaves like multiplication of real

A m × n B n × r C = AB m × r

i, j

cij= + + ⋯ + =ai1b1j ai2b2j ainbnj ∑
k=1

n

aikbkj

= (A) ⋅ (B).rowi colj

AB

A

m × n

B

n × r

= AB

m × r

B Rn AB

Rm A
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numbers, but there are several differences:

We can have  but  for some .
We can have , but .
We can have .

But most expected properties do hold:

Theorem 3.3: Let ,  and  be matrices of the appropriate sizes, and let  be a
scalar. Then:

(a) (associativity)

(b) (left distributivity)

(c) (right distributivity)

(d) (no cool name)

(e)  if  is (identity)

New material: Sections 3.1 and 3.2 continued.

Partitioned Matrices

Sometimes it is natural to view a matrix as partitioned into blocks. For example:

This can make matrix multiplication much easier when there are blocks that are
zero or an identity matrix. For example, if

then

A ≠ O = OAk k > 1
B ≠ ±I = IB4

AB ≠ BA

A B C k

A(BC) = (AB)C

A(B + C) = AB + AC

(A + B)C = AC + BC

k(AB) = (kA)B = A(kB)
A = A = AIm In A m × n

A = = = [ ]
⎡

⎣
⎢⎢⎢⎢⎢⎢

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0

2
1
4
1
7

1
3
0
7
2

⎤

⎦
⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0

2
1
4
1
7

1
3
0
7
2

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥
I

O

D

C

B = = [ ]
⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

0
0
0
1
0

0
0
0
0
1

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥
O

I
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You pretend that the submatrices are numbers and do matrix multiplication. As
long as all of the sizes match up, this works. But keep the left/right order straight!

See Example 3.12 for a larger, more complicated worked example.

The most common (and important) cases are when one or both of the matrices are
partitioned into rows or columns. For example, if  is  and  is , and

we partition  into its columns as , then we have:

where we think of  and the 's as scalars. The first column of  consists of the

dot products of the rows of  with the first column  of .

Example on board:  times .

Note that each column of  is a linear combination of the columns of .

Similarly, if we partition  into rows, we can compute

Same example on board.

AB = [ ] [ ] = [ ] = [ ] =
I

O

D

C

O

I

IO + DI

+ CIO2
D

C

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

2
1
4
1
7

1
3
0
7
2

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

A m × n B n × r

B B = [ ∣ ∣ ⋯ ∣ ]b ⃗ 1 b ⃗ 2 b ⃗ 
r

AB = A[ ∣ ∣ ⋯ ∣ ] = [ A ∣ A ∣ ⋯ ∣ A ],b ⃗ 1 b ⃗ 2 b ⃗ 
r b ⃗ 1 b ⃗ 2 b ⃗ 

r

A b ⃗ 
i AB

A b ⃗ 1 B

2 × 3 3 × 2

AB A

A

AB = B =

⎡

⎣
⎢⎢⎢⎢⎢

A1

A2

⋮
Am

⎤

⎦
⎥⎥⎥⎥⎥

⎡

⎣
⎢⎢⎢⎢⎢

BA1

BA2

⋮
BAm

⎤

⎦
⎥⎥⎥⎥⎥
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If we partition  into rows and  into columns, we get

which is just the usual description of , where the  entry is the dot product of
the th row of  with the th column of !

(Outer products and Example 3.11 not covered.)

The Transpose and Symmetric Matrices

Here's another operation on matrices, which has no analog for real numbers:

Definition: The transpose of an  matrix  is the  matrix  whose
 entry is the  entry of .

Example 3.14: The transposes of

are

Note that the columns and rows get interchanged.

One use of the transpose is to convert between row vectors and column vectors.
In particular, we can use this to express the dot product in terms of matrix
multiplication. If

A B

AB = [ ∣ ∣ ⋯ ∣ ] =

⎡

⎣
⎢⎢⎢⎢⎢

A1

A2

⋮
Am

⎤

⎦
⎥⎥⎥⎥⎥ b ⃗ 1 b ⃗ 2 b ⃗ 

r

⎡
⎣
⎢⎢

A1b ⃗ 1

⋮

Amb ⃗ 1

⋯

⋯

A1b ⃗ 
r

⋮

Amb ⃗ 
r

⎤
⎦
⎥⎥

AB ij

i A j B

m × n A n × m AT

ij ji A

A = [ ] , B = [ ] , and C = [ ]
1
5

3
0

2
1

a

c

b

d
5 −1 2

= , = [ ] , and = .AT
⎡
⎣⎢

1
3
2

5
0
1

⎤
⎦⎥ BT a

b

c

d
C T

⎡
⎣⎢

5
−1

2

⎤
⎦⎥
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then

Properties of the transpose

Theorem 3.4: Let  and  be matrices of the appropriate sizes, and let  be a
scalar. Then:

(a) (b) 

(c)    (d)    !
(e)  for all nonnegative integers 

(a), (b) and (c) are easy to see. (d) is more of a surprise, so it is worth explaining:

Proof of (d): Suppose  is  and  is . Then both of  and 
are . We have to check that the entries are equal:

Example on board

Note that (b) and (d) extend to several matrices. For example:

and

= and =u⃗ 

⎡

⎣
⎢⎢⎢⎢

u1

u2

⋮
un

⎤

⎦
⎥⎥⎥⎥ v ⃗ 

⎡

⎣
⎢⎢⎢⎢

v1

v2

⋮
vn

⎤

⎦
⎥⎥⎥⎥

= [ ⋯ ] = + ⋯ + = ⋅u⃗ T v ⃗ u1 u2 un

⎡

⎣
⎢⎢⎢⎢

v1

v2

⋮
vn

⎤

⎦
⎥⎥⎥⎥ u1v1 unvn u⃗ v ⃗ 

A B k

( = AAT )T (A + B = +)T
AT BT

(kA = k( ))T
AT (AB =)T

BT AT

( = (Ar)T
AT )r

r

A m × n B n × r (AB)T
BT AT

r × m

[(AB)T ]ij= (AB = (A) ⋅ (B) = ( ) ⋅ ( ))ji rowj coli colj AT rowi BT

= ( ) ⋅ ( ) = [( )( ) . □rowi BT colj AT BT AT ]ij

(A + B + C = ((A + B) + C = (A + B + = + +)T )T )T
CT AT BT CT

(ABC = ((AB)C = (AB =)T )T
C T )T

C T BT AT
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In particular, (e) follows: .

Symmetric matrices

Definition: A square matrix  is symmetric if . That is,  for
every  and .

Example: These matrices are symmetric:

Example: These matrices are not symmetric:

There are two ways to get a symmetric matrix from a non-symmetric matrix:

1. If  is square, then  is symmetric. This is because

Example on board.

2. And if  is any matrix, then  is symmetric. This is because

The same kind of argument shows that  is symmetric.

Example on board.

True/false: If  is symmetric, so is . On board.

True/false: If  and  are symmetric matrices of the same size, then  is
symmetric.

Let's try to show this is true: . This will only equal  if 
and  commute, and we have no reason to suspect that symmetric matrices
commute. So let's try a random example. Take

( = (Ar)T
AT )r

A = AAT =Aij Aji

i j

[ ] [ ]1
2

2
3

⎡
⎣⎢

1
2
3

2
4
5

3
5
6

⎤
⎦⎥

0
0

0
0

[ ] [ ]2
3

1
2

⎡
⎣⎢

1
5
1

2
4
5

1
2
1

⎤
⎦⎥

0
0

0
0

0
0

A A + AT

(A + = + ( = + A = A + .AT )T
AT AT )T

AT AT

B BBT

( B = ( = BBT )T
BT BT )T

BT

BBT

A A2

A B AB

(AB = = BA)T
BT AT AB A

B

6 of 7



Then  and  are symmetric, but

is not. So the answer is False.

Challenge problems from before

Question: Find a  matrix  such that  but .

One solution is

Question: Find a  matrix  such that  but .

One solution is

Where did I get this from? It is rotation by 120 degrees! Explain on board.

Similarly, for each  you can find a matrix such that  but no lower power of
 is the identity.

Don't forget that I have an office hour right now in MC103B.

A = [ ] and B = [ ] .
1
2

2
3

2
1

1
0

A B

AB = [ ] [ ] = [ ]1
2

2
3

2
1

1
0

4
7

1
2

3 × 3 A ≠ OA2 = OA3

A =
⎡
⎣⎢

0
0
0

1
0
0

0
1
0

⎤
⎦⎥

2 × 2 A A ≠ I2 =A3 I2

A = [ ]−1/2
/23√

− /23√
−1/2

n = IAn

A
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