Math 1600 Lecture 18, Section 2, 17 Oct 2014

Announcements:

Continue **reading** Section 3.5. We aren't covering 3.4. Work through recommended homework questions.

Five **practice midterms** have been posted on the course web page.

Next office hour: Monday, 3:00-3:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106, but not during reading week.

After today, we are halfway done the course!

Partial review of Section 3.3, Lectures 16 and 17:

Definition: An **inverse** of an n imes n matrix A is an n imes n matrix A' such that

$$AA' = I \quad {
m and} \quad A'A = I.$$

If such an A' exists, we say that A is **invertible**.

Theorem 3.6: If A is an invertible matrix, then its inverse is unique.

We write A^{-1} for **the** inverse of A, when A is invertible.

Theorem 3.8: The matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible if and only if $ad - bc \neq 0$. When this is the case, $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

We call ad - bc the **determinant** of A, and write it det A.

Enable java.

Properties of Invertible Matrices

Theorem 3.9: Assume A and B are invertible matrices of the same size. Then:

a. A^{-1} is invertible and $(A^{-1})^{-1} = A$ b. If c is a non-zero scalar, then cA is invertible and $(cA)^{-1} = \frac{1}{c} A^{-1}$ c. AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$ (socks and shoes rule) d. A^{T} is invertible and $(A^{T})^{-1} = (A^{-1})^{T}$ e. A^{n} is invertible for all $n \ge 0$ and $(A^{n})^{-1} = (A^{-1})^{n}$

Remark: There is no formula for $(A + B)^{-1}$. In fact, A + B might not be invertible, even if A and B are.

The fundamental theorem of invertible matrices:

Very important! Will be used repeatedly, and expanded later.

Theorem 3.12: Let A be an $n \times n$ matrix. The following are equivalent: a. A is invertible.

b. $Aec{x}=ec{b}$ has a unique solution for every $ec{b}\in\mathbb{R}^n.$

c. $Aec{x}=ec{0}$ has only the trivial (zero) solution.

d. The reduced row echelon form of A is I_n .

Theorem 3.13: Let A be a square matrix. If B is a square matrix such that either AB = I or BA = I, then A is invertible and $B = A^{-1}$.

Gauss-Jordan method for computing the inverse

Theorem 3.14: Let A be a square matrix. If a sequence of row operations reduces A to I, then the **same** sequence of row operations transforms I into A^{-1} .

This gives a general purpose method for determining whether a matrix ${\cal A}$ is invertible, and finding the inverse:

```
1. Form the n 	imes 2n matrix [A \mid I].
```

2. Use row operations to get it into reduced row echelon form.

3. If a zero row appears in the left-hand portion, then A is not invertible.

4. Otherwise, A will turn into I, and the right hand portion is $A^{-1}.$

New material: Section 3.5: Subspaces, basis, dimension and rank

This section contains some of the most important concepts of the course.

Subspaces

A generalization of lines and planes through the origin.

Definition: A **subspace** of \mathbb{R}^n is any collection S of vectors in \mathbb{R}^n such that:

1. The zero vector $ec{0}$ is in S.

2. S is **closed under addition**: If $ec{u}$ and $ec{v}$ are in S, then $ec{u}+ec{v}$ is in S.

3. S is **closed under scalar multiplication**: If \vec{u} is in S and c is any scalar, then $c\vec{u}$ is in S.

Conditions (2) and (3) together are the same as saying that S is **closed under linear combinations**.

Example: \mathbb{R}^n is a subspace of \mathbb{R}^n . Also, $S = \{ ec{0} \}$ is a subspace of \mathbb{R}^n .

Example: A plane \mathcal{P} through the origin in \mathbb{R}^3 is a subspace. Applet.

Here's an algebraic argument. Suppose \vec{v}_1 and \vec{v}_2 are direction vectors for \mathcal{P} , so $\mathcal{P} = \operatorname{span}(\vec{v}_1, \vec{v}_2)$. (1) $\vec{0}$ is in \mathcal{P} , since $\vec{0} = 0\vec{v}_1 + 0\vec{v}_2$. (2) If $\vec{u} = c_1\vec{v}_1 + c_2\vec{v}_2$ and $\vec{v} = d_1\vec{v}_1 + d_2\vec{v}_2$, then $\vec{u} + \vec{v} = (c_1\vec{v}_1 + c_2\vec{v}_2) + (d_1\vec{v}_1 + d_2\vec{v}_2)$ $= (c_1 + d_1)\vec{v}_1 + (c_2 + d_2)\vec{v}_2$ which is in $\operatorname{span}(ec{v}_1, ec{v}_2)$ as well. (3) For any scalar c,

$$cec{u} = c(c_1ec{v}_1 + c_2ec{v}_2) = (cc_1)ec{v}_1 + (cc_2)ec{v}_2$$

which is also in $\operatorname{span}(\vec{v}_1, \vec{v}_2)$.

On the other hand, a plane **not** through the origin is not a subspace. It of course fails (1), but the other conditions fail as well, as shown in the applet.

As another example, a line through the origin in \mathbb{R}^3 is also a subspace.

The **same** method as used above proves:

Theorem 3.19: Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ be vectors in \mathbb{R}^n . Then $\operatorname{span}(\vec{v}_1, \dots, \vec{v}_k)$ is a subspace of \mathbb{R}^n .

See text. We call ${
m span}(ec v_1,\ldots,ec v_k)$ the **subspace spanned by** $ec v_1,\ldots,ec v_k$. This generalizes the idea of a line or a plane through the origin.

Example: Is the set of vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ with x = y + z a subspace of \mathbb{R}^3 ? Here S is the set of all vectors of the form $\begin{bmatrix} y + z \\ y \\ z \end{bmatrix} = y \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. That is, $S = \operatorname{span}(\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix})$, so it is a subspace. Alternatively, one could check the properties:

(1) This holds with
$$y = z = 0$$
.
(2) Since $\begin{bmatrix} y_1 + z_1 \\ y_1 \\ z_1 \end{bmatrix} + \begin{bmatrix} y_2 + z_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} y_1 + z_1 + y_2 + z_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{bmatrix}$ is of the right form, this condition holds.

(3) Since
$$c \begin{bmatrix} y+z \\ y \\ z \end{bmatrix} = \begin{bmatrix} cy+cz \\ cy \\ cz \end{bmatrix}$$
, this condition holds too.

This is geometrically a plane through the origin, so our previous discussion applies as well.

See Example 3.38 in the text for a similar question.

Example: Is the set of vectors
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 with $x = y + z + 1$ a subspace of \mathbb{R}^3 ?

No, because it doesn't contain the zero vector. (The other properties don't hold either.)

Example: Is the set of vectors
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 with $y = \sin(x)$ a subspace of \mathbb{R}^2 ?

It does contain the zero vector. Let's check condition (3): Consider a vector $\begin{bmatrix} & & \\ & & \end{bmatrix}$

 $\left\lfloor x \\ \sin(x)
ight
floor$ in this set, and let c be a scalar. Then

$$c \begin{bmatrix} x \\ \sin(x) \end{bmatrix} = \begin{bmatrix} cx \\ c\sin(x) \end{bmatrix}$$

and $c\sin(x)$ is not usually equal to $\sin(cx)$. To show that this is false, we give an explicit counterexample:

$$\begin{bmatrix} \pi/2\\1 \end{bmatrix}$$
 is in the set, but $2\begin{bmatrix} \pi/2\\1 \end{bmatrix} = \begin{bmatrix} \pi\\2 \end{bmatrix}$ is not in the set, since $\sin(\pi) = 0 \neq 2$.

Property (2) doesn't hold either.

Subspaces associated with matrices

Theorem 3.21: Let A be an m imes n matrix and let N be the set of solutions of the homogeneous system $A\vec{x} = \vec{0}$. Then N is a subspace of \mathbb{R}^n .

Proof: (1) Since $A \vec{0}_n = \vec{0}_m$, the zero vector $\vec{0}_n$ is in N. (2) Let \vec{u} and \vec{v} be in N, so $A\vec{u} = \vec{0}$ and $A\vec{v} = \vec{0}$. Then

$$A(ec{u}+ec{v})=Aec{u}+Aec{v}=ec{0}+ec{0}=ec{0}$$

so $ec{u}+ec{v}$ is in N.

(3) If c is a scalar and $ec{u}$ is in N, then

$$A(cec{u})=cAec{u}=c\,ec{0}=ec{0}$$

 \square

so $cec{u}$ is in N.

Aside: At this point, the book states **Theorem 3.22**, which says that every linear system has no solution, one solution or infinitely many solutions, and gives a proof of this. We already know this is true, using Theorem 2.2 from Section 2.2 (see Lecture 9). The proof given here is in a sense better, since it doesn't rely on knowing anything about row echelon form, but I won't use class time to cover it.

Spans and null spaces are the two main sources of subspaces.

Definition: Let A be an m imes n matrix.

1. The **row space** of A is the subspace row(A) of \mathbb{R}^n spanned by the rows of A.

2. The **column space** of A is the subspace $\operatorname{col}(A)$ of \mathbb{R}^m spanned by the columns of A.

3. The **null space** of A is the subspace $\operatorname{null}(A)$ of \mathbb{R}^n consisting of the solutions to the system $A\vec{x} = \vec{0}$.

Example: The column space of
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 is $\operatorname{span}(\begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix})$. A

vector \vec{b} is a linear combination of these columns if and only if the system $A\vec{x}=\vec{b}$ has a solution. But since A is invertible (its determinant is

4-6=-2
eq 0), every such system has a (unique) solution. So ${
m col}(A)=\mathbb{R}^2.$

The row space of A is the same as the column space of A^T , so by a similar argument, this is all of \mathbb{R}^2 as well.

The null space of A consists of the vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ such that $A \begin{bmatrix} x \\ y \end{bmatrix} = \vec{0}$. That is,

$$x \begin{bmatrix} 1 \\ 3 \end{bmatrix} + y \begin{bmatrix} 2 \\ 4 \end{bmatrix} = ec 0$$

Since those columns are linearly independent, $\operatorname{null}(A) = \{ \vec{0} \}.$

Example: The column space of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$ is the span of the two

columns, which is a subspace of \mathbb{R}^3 . Since the columns are linearly independent, this is a plane through the origin in \mathbb{R}^3 .

Determine whether $\begin{bmatrix} 2\\0\\1 \end{bmatrix}$ and $\begin{bmatrix} 2\\0\\-2 \end{bmatrix}$ are in $\operatorname{col}(A)$. (On board.)

The row space of A is the span of the three rows. But we already saw that the span of the first two rows is \mathbb{R}^2 , so the span of all three rows is also \mathbb{R}^2 . So $\operatorname{row}(A) = \mathbb{R}^2$.

Again, since the columns are linearly independent, $\mathrm{null}(A)=\{ec{0}\}.$

Example: Find the null space of $A = \begin{bmatrix} 1 & 2 \\ -2 & -4 \end{bmatrix}$.

We want to solve the system $Aec{x}=ec{0}$, so we row reduce $egin{array}{c|c} 1&2&0\\ -2&-4&0 \end{array}$

to
$$\begin{bmatrix} 1 & 2 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$
. Then $y = t$ and $x = -2t$ are the solutions, so $\operatorname{null}(A) = \left\{ \begin{bmatrix} -2t \\ t \end{bmatrix} \right\}.$

Next we will explain the best way to describe a subspace.

Basis

We know that to describe a plane \mathcal{P} through the origin, we can give two direction vectors \vec{u} and \vec{v} which are linearly independent. Then $\mathcal{P} = \operatorname{span}(\vec{u}, \vec{v})$. We know that two vectors is always enough, and one vector will not work.

Definition: A **basis** for a subspace S of \mathbb{R}^n is a set of vectors $ec{v}_1,\ldots,ec{v}_k$ such that:

1. $S = ext{span}(ec{v}_1, \dots, ec{v}_k)$, and

2. $\vec{v}_1, \ldots, \vec{v}_k$ are linearly independent.

Condition (2) ensures that none of the vectors is redundant, so we aren't being wasteful. Giving a basis for a subspace is a good way to "describe" it.

Example 3.42: The standard unit vectors $\vec{e}_1, \ldots, \vec{e}_n$ in \mathbb{R}^n are linearly independent and span \mathbb{R}^n , so they form a basis of \mathbb{R}^n called the **standard basis**.

Example: We saw above that $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ span \mathbb{R}^2 . They are also linearly independent, so they are a basis for \mathbb{R}^2 .

Note that $\begin{bmatrix} 1\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\1 \end{bmatrix}$ are another basis for \mathbb{R}^2 . A subspace will in general have many bases, but we'll see soon that they all have the same

number of vectors! (Grammar: one basis, two bases.)

Next class we will continue talking about bases and will discuss systematic methods for finding the three subspaces associated to a matrix A.