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Math 1600 Lecture 18, Section 2, 17 Oct 2014

Announcements:

Continue reading Section 3.5. We aren't covering 3.4. Work through
recommended homework questions.

Five practice midterms have been posted on the course web page.

Next office hour: Monday, 3:00-3:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106, but not during reading
week.

After today, we are halfway done the course!

Partial review of Section 3.3, Lectures 16 and 17:

Definition: An inverse of an  matrix  is an  matrix  such
that

If such an  exists, we say that  is invertible.

Theorem 3.6: If  is an invertible matrix, then its inverse is unique.

We write  for the inverse of , when  is invertible.

Theorem 3.8: The matrix  is invertible if and only if

. When this is the case,

We call  the determinant of , and write it .

n × n A n × n A′

A = I and A = I.A′ A′

A′ A

A

A−1 A A

A = [ ]a

c

b

d
ad − bc ≠ 0

= [ ] .A−1 1
ad − bc

d

−c

−b

a

ad − bc A det A
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Properties of Invertible Matrices

Theorem 3.9: Assume  and  are invertible matrices of the same size.
Then:

 is invertible and a. 

If  is a non-zero scalar, then  is invertible and b. 

 is invertible and  (socks and shoes rule)c. 

 is invertible and d. 

 is invertible for all  and e. 

Remark: There is no formula for . In fact,  might not be
invertible, even if  and  are.

The fundamental theorem of invertible matrices:

Very important! Will be used repeatedly, and expanded later.

Theorem 3.12: Let  be an  matrix. The following are equivalent:
a.  is invertible.

b.  has a unique solution for every .

c.  has only the trivial (zero) solution.
d. The reduced row echelon form of  is .

Theorem 3.13: Let  be a square matrix. If  is a square matrix such that

either  or , then  is invertible and .

Gauss-Jordan method for computing the inverse

Theorem 3.14: Let  be a square matrix. If a sequence of row operations
reduces  to , then the same sequence of row operations transforms 

into .

This gives a general purpose method for determining whether a matrix  is
invertible, and finding the inverse:

1. Form the  matrix .

A B

A−1 ( = AA−1)−1

c cA (cA =)−1 1
c

A−1

AB (AB =)−1
B−1A−1

AT ( = (AT )−1
A−1)T

An n ≥ 0 ( = (An)−1
A−1)n

(A + B)−1
A + B

A B

A n × n
A

A =x⃗ b ⃗ ∈b ⃗ Rn

A =x⃗ 0⃗ 
A In

A B

AB = I BA = I A B = A−1

A
A I I

A−1

A

n × 2n [A ∣ I ]
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2. Use row operations to get it into reduced row echelon form.

3. If a zero row appears in the left-hand portion, then  is not invertible.

4. Otherwise,  will turn into , and the right hand portion is .

New material: Section 3.5: Subspaces, basis,
dimension and rank

This section contains some of the most important concepts of the course.

Subspaces

A generalization of lines and planes through the origin.

Definition: A subspace of  is any collection  of vectors in  such
that:

1. The zero vector  is in .
2.  is closed under addition: If  and  are in , then  is in .
3.  is closed under scalar multiplication: If  is in  and  is any scalar,
then  is in .

Conditions (2) and (3) together are the same as saying that  is closed
under linear combinations.

Example:  is a subspace of . Also,  is a subspace of .

Example: A plane  through the origin in  is a subspace. Applet.

Here's an algebraic argument. Suppose  and  are direction vectors for
, so .

(1)  is in , since .
(2) If  and , then

A

A I A−1

Rn S Rn

0⃗ S
S u⃗ v ⃗ S +u⃗ v ⃗ S
S u⃗ S c

cu⃗ S

S

Rn Rn S = { }0⃗ Rn

P R3

v ⃗ 1 v ⃗ 2
P P = span( , )v ⃗ 1 v ⃗ 2

0⃗ P = 0 + 00⃗ v ⃗ 1 v ⃗ 2
= +u⃗ c1v ⃗ 1 c2v ⃗ 2 = +v ⃗ d1v ⃗ 1 d2v ⃗ 2

+u⃗ v ⃗ = ( + ) + ( + )c1v ⃗ 1 c2v ⃗ 2 d1v ⃗ 1 d2v ⃗ 2
= ( + ) + ( + )c1 d1 v ⃗ 1 c2 d2 v ⃗ 2
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which is in  as well.
(3) For any scalar ,

which is also in .

On the other hand, a plane not through the origin is not a subspace. It of
course fails (1), but the other conditions fail as well, as shown in the applet.

As another example, a line through the origin in  is also a subspace.

The same method as used above proves:

Theorem 3.19: Let  be vectors in . Then 
is a subspace of .

See text. We call  the subspace spanned by .
This generalizes the idea of a line or a plane through the origin.

Example: Is the set of vectors  with  a subspace of ?

Here  is the set of all vectors of the form .

That is, , so it is a subspace.

Alternatively, one could check the properties:
(1) This holds with .

(2) Since  is of the

right form, this condition holds.

span( , )v ⃗ 1 v ⃗ 2
c

c = c( + ) = (c ) + (c )u⃗ c1v ⃗ 1 c2v ⃗ 2 c1 v ⃗ 1 c2 v ⃗ 2

span( , )v ⃗ 1 v ⃗ 2

R3

, , … ,v ⃗ 1 v ⃗ 2 v ⃗ k Rn span( , … , )v ⃗ 1 v ⃗ k
Rn

span( , … , )v ⃗ 1 v ⃗ k , … ,v ⃗ 1 v ⃗ k

⎡
⎣⎢

x

y

z

⎤
⎦⎥ x = y + z R3

S = y + z
⎡
⎣⎢

y + z

y

z

⎤
⎦⎥

⎡
⎣⎢

1
1
0

⎤
⎦⎥

⎡
⎣⎢

1
0
1

⎤
⎦⎥

S = span( , )
⎡
⎣⎢

1
1
0

⎤
⎦⎥

⎡
⎣⎢

1
0
1

⎤
⎦⎥

y = z = 0

+ =
⎡
⎣⎢

+y1 z1

y1

z1

⎤
⎦⎥

⎡
⎣⎢

+y2 z2

y2

z2

⎤
⎦⎥

⎡
⎣⎢

+ + +y1 z1 y2 z2

+y1 y2

+z1 z2

⎤
⎦⎥
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(3) Since , this condition holds too.

This is geometrically a plane through the origin, so our previous discussion
applies as well.

See Example 3.38 in the text for a similar question.

Example: Is the set of vectors  with  a subspace of ?

No, because it doesn't contain the zero vector. (The other properties don't
hold either.)

Example: Is the set of vectors  with  a subspace of ?

It does contain the zero vector. Let's check condition (3): Consider a vector

 in this set, and let  be a scalar. Then

and  is not usually equal to .
To show that this is false, we give an explicit counterexample:

 is in the set, but  is not in the set, since

.

Property (2) doesn't hold either.

Subspaces associated with matrices

c =
⎡
⎣⎢

y + z

y

z

⎤
⎦⎥

⎡
⎣⎢

cy + cz

cy

cz

⎤
⎦⎥

⎡
⎣⎢

x

y

z

⎤
⎦⎥ x = y + z + 1 R3

[ ]x

y
y = sin(x) R2

[ ]x

sin(x)
c

c [ ] = [ ]x

sin(x)
cx

c sin(x)

c sin(x) sin(cx)

[ ]π/2
1

2 [ ] = [ ]π/2
1

π

2
sin(π) = 0 ≠ 2
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Theorem 3.21: Let  be an  matrix and let  be the set of

solutions of the homogeneous system . Then  is a subspace of
.

Proof: (1) Since , the zero vector  is in .

(2) Let  and  be in , so  and . Then

so  is in .
(3) If  is a scalar and  is in , then

so  is in . 

Aside: At this point, the book states Theorem 3.22, which says that every
linear system has no solution, one solution or infinitely many solutions, and
gives a proof of this. We already know this is true, using Theorem 2.2 from
Section 2.2 (see Lecture 9). The proof given here is in a sense better, since
it doesn't rely on knowing anything about row echelon form, but I won't use
class time to cover it.

Spans and null spaces are the two main sources of subspaces.

Definition: Let  be an  matrix.

1. The row space of  is the subspace  of  spanned by the rows
of .
2. The column space of  is the subspace  of  spanned by the
columns of .
3. The null space of  is the subspace  of  consisting of the

solutions to the system .

Example: The column space of  is . A

vector  is a linear combination of these columns if and only if the system

 has a solution. But since  is invertible (its determinant is

A m × n N

A =x⃗ 0⃗ N
Rn

A =0⃗ 
n 0⃗ 

m 0⃗ 
n N

u⃗ v ⃗ N A =u⃗ 0⃗ A =v ⃗ 0⃗ 

A( + ) = A + A = + =u⃗ v ⃗ u⃗ v ⃗ 0⃗ 0⃗ 0⃗ 

+u⃗ v ⃗ N
c u⃗ N

A(c ) = cA = c =u⃗ u⃗ 0⃗ 0⃗ 

cu⃗ N □

A m × n

A row(A) Rn

A
A col(A) Rm

A
A null(A) Rn

A =x⃗ 0⃗ 

A = [ ]1
3

2
4

span([ ] , [ ])
1
3

2
4

b ⃗ 

A =x⃗ b ⃗ A
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), every such system has a (unique) solution. So

.

The row space of  is the same as the column space of , so by a similar

argument, this is all of  as well.

The null space of  consists of the vectors  such that .

That is,

Since those columns are linearly independent, .

Example: The column space of  is the span of the two

columns, which is a subspace of . Since the columns are linearly

independent, this is a plane through the origin in .

Determine whether  and  are in . (On board.)

The row space of  is the span of the three rows. But we already saw that

the span of the first two rows is , so the span of all three rows is also .

So .

Again, since the columns are linearly independent, .

Example: Find the null space of .

4 − 6 = −2 ≠ 0
col(A) = R2

A AT

R2

A [ ]x

y
A [ ] =

x

y
0⃗ 

x [ ] + y [ ] = .
1
3

2
4

0⃗ 

null(A) = { }0⃗ 

A =
⎡
⎣⎢

1
3
5

2
4
6

⎤
⎦⎥

R3

R3

⎡
⎣⎢

2
0
1

⎤
⎦⎥

⎡
⎣⎢

2
0

−2

⎤
⎦⎥ col(A)

A

R2 R2

row(A) = R2

null(A) = { }0⃗ 

A = [ ]1
−2

2
−4
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We want to solve the system , so we row reduce 

to . Then  and  are the solutions, so

Next we will explain the best way to describe a subspace.

Basis

We know that to describe a plane  through the origin, we can give two
direction vectors  and  which are linearly independent. Then

. We know that two vectors is always enough, and one
vector will not work.

Definition: A basis for a subspace  of  is a set of vectors 
such that:
1. , and
2.  are linearly independent.

Condition (2) ensures that none of the vectors is redundant, so we aren't
being wasteful. Giving a basis for a subspace is a good way to "describe" it.

Example 3.42: The standard unit vectors  in  are linearly
independent and span , so they form a basis of  called the standard
basis.

Example: We saw above that  and  span . They are also

linearly independent, so they are a basis for .

Note that  and  are another basis for . A subspace will in

general have many bases, but we'll see soon that they all have the same

A =x⃗ 0⃗ [ ]1
−2

2
−4

0
0

[ ]1
0

2
0

0
0

y = t x = −2t

null(A) = {[ ]} .
−2t

t

P
u⃗ v ⃗ 

P = span( , )u⃗ v ⃗ 

S Rn , … ,v ⃗ 1 v ⃗ k

S = span( , … , )v ⃗ 1 v ⃗ k
, … ,v ⃗ 1 v ⃗ k

, … ,e ⃗ 1 e ⃗ n Rn

Rn Rn

[ ]1
3

[ ]2
4

R2

R2

[ ]1
0

[ ]0
1

R2
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number of vectors! (Grammar: one basis, two bases.)

Next class we will continue talking about bases and will discuss systematic
methods for finding the three subspaces associated to a matrix .A
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