
Math 1600 Lecture 19, Section 2, 20 Oct 2014

Announcements:

Continue reading Section 3.5. Work through recommended homework
questions.

Tutorials: Midterm review this week. No quiz.

Office hour: today, 3:00-3:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC106.

Extra Midterm Review: Friday, October 24, details TBA. Bring questions.

Midterm: Saturday, October 25, 7-10pm. Rooms: A-E: UCC37. F-Ma: UCC56
(this room). Mc-Z: UCC146. It will cover the material up to and including
today's lecture. Practice midterms are on website.

Partial review of Lecture 18:

Subspaces

Definition: A subspace of  is any collection  of vectors in  such
that:

1. The zero vector  is in .
2.  is closed under addition: If  and  are in , then  is in .
3.  is closed under scalar multiplication: If  is in  and  is any scalar,
then  is in .

Conditions (2) and (3) together are the same as saying that  is closed
under linear combinations.

Example:  is a subspace of . Also,  is a subspace of .

A line or plane through the origin in  is a subspace. Applet.

Rn S Rn

0⃗ S
S u⃗ v ⃗ S +u⃗ v ⃗ S
S u⃗ S c

cu⃗ S

S

Rn Rn S = { }0⃗ Rn

R3
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On the other hand, a plane not through the origin is not a subspace. It of
course fails (1), but the other conditions fail as well, as shown in the applet.

Theorem 3.19: Let  be vectors in . Then 
is a subspace of .

Subspaces associated with matrices

Theorem 3.21: Let  be an  matrix and let  be the set of

solutions of the homogeneous system . Then  is a subspace of
.

Spans and null spaces are the two main sources of subspaces.

Definition: Let  be an  matrix.

1. The row space of  is the subspace  of  spanned by the rows
of .
2. The column space of  is the subspace  of  spanned by the
columns of .
3. The null space of  is the subspace  of  consisting of the

solutions to the system .

Example: The column space of  is , which

we saw is all of . We also saw that the row space of  is  and the null

space is .

Example: The column space of  is the span of the two

columns, which is a subspace of . Since the columns are linearly

independent, this is a plane through the origin in .

Basis

We know that to describe a plane  through the origin, we can give two

, , … ,v ⃗ 1 v ⃗ 2 v ⃗ k Rn span( , … , )v ⃗ 1 v ⃗ k
Rn

A m × n N

A =x⃗ 0⃗ N
Rn

A m × n

A row(A) Rn

A
A col(A) Rm

A
A null(A) Rn

A =x⃗ 0⃗ 

A = [ ]1
3

2
4

span([ ] , [ ])
1
3

2
4

R2 A R2

{ }0⃗ 

A =
⎡
⎣⎢

1
3
5

2
4
6

⎤
⎦⎥

R3

R3

P
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direction vectors  and  which are linearly independent. Then
. We know that two vectors is always enough, and one

vector will not work.

Definition: A basis for a subspace  of  is a set of vectors 
such that:
1. , and
2.  are linearly independent.

Condition (2) ensures that none of the vectors is redundant, so we aren't
being wasteful. Giving a basis for a subspace is a good way to "describe" it.

Example 3.42: The standard unit vectors  in  are linearly
independent and span , so they form a basis of  called the standard
basis.

Example: We saw above that  and  span . They are also

linearly independent, so they are a basis for .

Note that  and  are another basis for . A subspace will in

general have many bases, but we'll see soon that they all have the same
number of vectors! (Grammar: one basis, two bases.)

New material

Example: Let  be the plane through the origin with direction vectors

 and . Then  is a subspace of  and these two vectors are a

basis for .

Example: Find a basis for .

u⃗ v ⃗ 
P = span( , )u⃗ v ⃗ 

S Rn , … ,v ⃗ 1 v ⃗ k

S = span( , … , )v ⃗ 1 v ⃗ k
, … ,v ⃗ 1 v ⃗ k

, … ,e ⃗ 1 e ⃗ n Rn

Rn Rn

[ ]1
3

[ ]2
4

R2

R2

[ ]1
0

[ ]0
1

R2

P⎡
⎣⎢

1
3
5

⎤
⎦⎥

⎡
⎣⎢

2
4
6

⎤
⎦⎥ P R3

P

S = span( , , )
⎡
⎣⎢

3
0
2

⎤
⎦⎥

⎡
⎣⎢

−2
1
1

⎤
⎦⎥

⎡
⎣⎢

1
1
3

⎤
⎦⎥
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Solution:
You can see by inspection that these vectors aren't linearly independent:

the third is the sum of the first two. So . These

two vectors are linearly independent, so they form a basis for .

In more complicated situations, there are two ways to find a basis of the
span of a set of vectors. The first way uses the following result:

Theorem 3.20: Let  and  be row equivalent matrices. Then
.

Proof: Suppose  is obtained from  by performing elementary row
operations. Each of these operations expresses the new row as a linear
combination of the previous rows. So every row of  is a linear combination
of the rows of . So .

On the other hand, each row operation is reversible, so reversing the above
argument gives that . Therefore,

This will be useful, because it is easy to understand the row space of a
matrix in row echelon form.

Example: Let's redo the above example. Consider the matrix

whose rows are the given vectors. So .

Row reduction produces the following matrix

S = span( , )
⎡
⎣⎢

3
0
2

⎤
⎦⎥

⎡
⎣⎢

−2
1
1

⎤
⎦⎥

S

A B
row(A) = row(B)

B A

B
A row(B) ⊆ row(A)

row(A) ⊆ row(B)
row(A) = row(B). □

A =
⎡
⎣⎢

3
−2

1

0
1
1

2
1
3

⎤
⎦⎥

S = row(A)
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which is in reduced row echelon form. By Theorem 3.20, . But
the first two rows clearly give a basis for , so another solution to the

question is  and .

Theorem: If  is a matrix in row echelon form, then the nonzero rows of 
form a basis for .

Example: Let

 is the span of the nonzero rows, since zero rows don't contribute.
So we just need to see that the nonzero rows are linearly independent. If we

had , then , by looking at the first
component. So , by looking at the second component. And so

, by looking at the fourth component. So .

The same argument works in general, by looking at the pivot (leading)
columns, and this proves the Theorem.

This gives rise to the row method for finding a basis for a subspace 
spanned by some vectors :

1. Form the matrix  whose rows are , so .
2. Reduce  to row echelon form .
3. The nonzero rows of  will be a basis of .

Notice that the vectors you get are usually different from the vectors you

B =
⎡
⎣⎢

1
0
0

0
1
0

2/3
7/3

0

⎤
⎦⎥

S = row(B)
row(B)⎡

⎣⎢
1
0

2/3

⎤
⎦⎥

⎡
⎣⎢

0
1

7/3

⎤
⎦⎥

R R
row(R)

R = =

⎡
⎣
⎢⎢⎢

1
0
0
0

2
5
0
0

3
6
0
0

4
7
8
0

⎤
⎦
⎥⎥⎥

⎡
⎣
⎢⎢⎢

a⃗ 1
a⃗ 2
a⃗ 3
a⃗ 4

⎤
⎦
⎥⎥⎥

row(R)

+ + =c1a⃗ 1 c2a⃗ 2 c3a⃗ 3 0⃗ = 0c1
5 = 0c2

8 = 0c3 = = = 0c1 c2 c3

S
, … ,v ⃗ 1 v ⃗ k

A , … ,v ⃗ 1 v ⃗ k S = row(A)
A R

R S = row(A) = row(R)
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started with. Given , one can always find a basis for 
which just omits some of the given vectors. We'll explain this next.

Suppose we form a matrix  whose columns are . A nonzero

solution to the system  is exactly a dependency relationship
between the given vectors. Also, recall that if  is row equivalent to , then

 has the same solutions as . This means that the columns of
 have the same dependency relationships as the columns of .

Example 3.47: Find a basis for the column space of

Solution: The reduced row echelon form is

Write  for the columns of  and  for the columns of . You can see
immediately that  and . So

, and these three are linearly independent since
they are standard unit vectors.

It follows that the columns of  have the same dependency relationships:
 and . Also, ,  and  must be

linearly independent. So a basis for  is given by ,  and .

Note that these are the columns corresponding to the leading 1's in !

Warning: Elementary row operations change the column space! So
. So while ,  and  are a basis for , they are

not a solution to the question asked.

S = span( , … , )v ⃗ 1 v ⃗ k S

A , … ,v ⃗ 1 v ⃗ k
A =x⃗ 0⃗ 

R A

R =x⃗ 0⃗ A =x⃗ 0⃗ 
R A

A =

⎡
⎣
⎢⎢⎢

1
2

−3
4

1
−1

2
1

3
0
1
6

1
1

−2
1

6
−1

1
3

⎤
⎦
⎥⎥⎥

R =

⎡
⎣
⎢⎢⎢

1
0
0
0

0
1
0
0

1
2
0
0

0
0
1
0

−1
3
4
0

⎤
⎦
⎥⎥⎥

r ⃗ i R a⃗ i A
= + 2r ⃗ 3 r ⃗ 1 r ⃗ 2 = − + 3 + 4r ⃗ 5 r ⃗ 1 r ⃗ 2 r ⃗ 4

col(R) = span( , , )r ⃗ 1 r ⃗ 2 r ⃗ 4

A
= + 2a⃗ 3 a⃗ 1 a⃗ 2 = − + 3 + 4a⃗ 5 a⃗ 1 a⃗ 2 a⃗ 4 a⃗ 1 a⃗ 2 a⃗ 4

col(A) a⃗ 1 a⃗ 2 a⃗ 4

R

col(A) ≠ col(R) r ⃗ 1 r ⃗ 2 r ⃗ 4 col(R)
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The other kind of subspace that arises a lot is the null space of a matrix ,

the subspace of solutions to the homogeneous system . We learned
in Chapter 2 how to find a basis for this subspace, even though we didn't
use this terminology.

Example 3.48: Find a basis for the null space of the  matrix  above.

Solution: The reduced row echelon form of  is

We see that  and  are free variables, so we let  and  and
use back substitution to find that

Therefore, the two column vectors shown form a basis for the null space.

The vectors that arise in this way will always be linearly independent, since
if all 's are , then the free variables must be zero, so the parameters
must be zero.

Summary

Finding bases for ,  and :

1. Find the reduced row echelon form  of .
2. The nonzero rows of  form a basis for .
3. The columns of  that correspond to the columns of  with leading 1's

A

A =x⃗ 0⃗ 

4 × 5 A

[A ∣ ]0⃗ 

[R ∣ ] =0⃗ 

⎡

⎣
⎢⎢⎢⎢

1
0
0
0

0
1
0
0

1
2
0
0

0
0
1
0

−1
3
4
0

0
0
0
0

⎤

⎦
⎥⎥⎥⎥

x3 x5 = sx3 = tx5

= = s + t (See text.)x⃗ 

⎡

⎣
⎢⎢⎢⎢⎢⎢

x1

x2

x3

x4

x5

⎤

⎦
⎥⎥⎥⎥⎥⎥

⎡

⎣
⎢⎢⎢⎢⎢⎢

−1
−2

1
0
0

⎤

⎦
⎥⎥⎥⎥⎥⎥

⎡

⎣
⎢⎢⎢⎢⎢⎢

1
−3

0
−4

1

⎤

⎦
⎥⎥⎥⎥⎥⎥

xi 0

row(A) col(A) null(A)

R A
R row(A) = row(R)

A R
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form a basis for .

4. Use back substitution to solve ; the vectors that arise are a basis
for .

You just need to do row reduction once to answer all three questions!

We have seen two ways to compute a basis of a span of a set of vectors.
One is to make them the columns of a matrix, and the other is to make
them the rows. The column method produces a basis using vectors from the
original set. Both ways require about the same amount of work.

Similarly, if asked to find a basis for , one could use the column

method on .

Dimension

We have seen that a subspace has many bases. Have you noticed anything
about the number of vectors in each basis?

Theorem 3.23: Let  be a subspace of . Then any two bases for  have
the same number of vectors.

Idea of proof:
Suppose that  and  were both bases for . We'll show
that this is impossible, by showing that  are linearly dependent.
Since  is a basis, we can express each  in terms of the 's:

Then

col(A)
R =x⃗ 0⃗ 

null(A) = null(R)

row(A)
AT

S Rn S

{ , }u⃗ 1 u⃗ 2 { , , }v ⃗ 1 v ⃗ 2 v ⃗ 3 S
, ,v ⃗ 1 v ⃗ 2 v ⃗ 3

{ , }u⃗ 1 u⃗ 2 v ⃗ i u⃗ j

v ⃗ 1
v ⃗ 2
v ⃗ 3

= +a11u⃗ 1 a21u⃗ 2
= +a12u⃗ 1 a22u⃗ 2
= +a13u⃗ 1 a23u⃗ 2

=

=

+ +c1v ⃗ 1 c2v ⃗ 2 c3v ⃗ 3
( + ) + ( + ) + ( + )c1 a11u⃗ 1 a21u⃗ 2 c2 a12u⃗ 1 a22u⃗ 2 c3 a13u⃗ 1 a23u⃗ 2

( + + ) + ( + + )c1a11 c2a12 c3a13 u⃗ 1 c1a21 c2a22 c3a23 u⃗ 2
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But the homogenous system

has nontrivial solutions! (Why?) Therefore, we can find nontrivial , , 
such that

A very similar argument works for the general case.

Definition: The number of vectors in a basis for a subspace  is called the
dimension of , denoted .

Example:

Example: If  is a line through the origin in  or , then 

Example: If  is a plane through the origin in , then 

Example: If , then 

+ +c1a11 c2a12 c3a13

+ +c1a21 c2a22 c3a23

= 0

= 0

c1 c2 c3

+ + = □c1v ⃗ 1 c2v ⃗ 2 c3v ⃗ 3 0⃗ 

S
S dim S

dim = nRn

S R2 R3 dim S = 1

S R3 dim S = 2

S = span( , , )
⎡
⎣⎢

3
0
2

⎤
⎦⎥

⎡
⎣⎢

−2
1
1

⎤
⎦⎥

⎡
⎣⎢

1
1
3

⎤
⎦⎥ dim S = 2
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