Math 1600 Lecture 19, Section 2, 20 Oct 2014

Announcements:

Continue **reading** Section 3.5. Work through recommended homework questions.

Tutorials: Midterm review this week. No quiz.

Office hour: today, 3:00-3:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC106.

Extra Midterm Review: Friday, October 24, details TBA. Bring questions.

Midterm: Saturday, October 25, 7-10pm. Rooms: A-E: UCC37. F-Ma: UCC56 (this room). Mc-Z: UCC146. It will cover the material up to and including today's lecture. **Practice midterms** are on website.

Partial review of Lecture 18:

Subspaces

Definition: A subspace of \mathbb{R}^n is any collection S of vectors in \mathbb{R}^n such that:

1. The zero vector $\vec{0}$ is in $S.$

2. S is <code>closed under addition</mark>: If \vec{u} and \vec{v} are in S , then $\vec{u} + \vec{v}$ is in $S.$ </code>

3. S is closed under scalar multiplication: If \vec{u} is in S and c is any scalar, then $c\vec{u}$ is in $S.$

Conditions (2) and (3) together are the same as saying that S is **closed under linear combinations**.

 $\boldsymbol{\mathsf{Example:}}\ \mathbb{R}^n$ is a subspace of \mathbb{R}^n . Also, $S=\{\vec{0}\}$ is a subspace of $\mathbb{R}^n.$

A line or plane through the origin in \mathbb{R}^3 is a subspace. Applet.

On the other hand, a plane **not** through the origin is not a subspace. It of course fails (1), but the other conditions fail as well, as shown in the applet.

 ${\sf Theorem 3.19:}$ Let $\vec v_1,\vec v_2,\ldots,\vec v_k$ be vectors in $\mathbb{R}^n.$ Then ${\rm span}(\vec v_1,\ldots,\vec v_k)$ is a subspace of \mathbb{R}^n .

Subspaces associated with matrices

Theorem 3.21: Let A be an $m \times n$ matrix and let N be the set of solutions of the homogeneous system $A\vec{x} = \vec{0}$. Then N is a subspace of \mathbb{R}^n .

Spans and null spaces are the two main sources of subspaces.

Definition: Let A be an $m \times n$ matrix.

1. The row space of A is the subspace $\mathrm{row}(A)$ of \mathbb{R}^n spanned by the rows of A .

2. The column space of A is the subspace $\mathrm{col}(A)$ of \mathbb{R}^m spanned by the columns of A .

3. The **null space** of A is the subspace $\operatorname{null}(A)$ of \mathbb{R}^n consisting of the solutions to the system $A\vec{x}=\vec{0}.$

Example: The column space of $A = \begin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix}$ is $\text{span}(\begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix}, \begin{bmatrix} 2 \ 4 \end{bmatrix})$, which we saw is all of $\mathbb{R}^2.$ We also saw that the row space of A is \mathbb{R}^2 and the null space is $\{\vec{0}\}.$ 3 $\begin{bmatrix} 2 \ 4 \end{bmatrix}$ is $\mathrm{span}(\begin{bmatrix} 1 \ 3 \end{bmatrix},\begin{bmatrix} 2 \ 4 \end{bmatrix})$ 2 4

Example: The column space of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is the span of the two $\overline{}$ $\overline{}$ 1 3 5 2 4 6 \mathbf{I} \mathbf{I} \overline{a}

columns, which is a subspace of $\mathbb{R}^3.$ Since the columns are linearly independent, this is a plane through the origin in \mathbb{R}^3 .

Basis

We know that to describe a plane $\mathcal P$ through the origin, we can give two

direction vectors \vec{u} and \vec{v} which are linearly independent. Then $\mathcal{P} = \mathrm{span}(\vec{u}, \vec{v}).$ We know that two vectors is always enough, and one vector will not work.

 $\textbf{Definition: A basis}$ for a subspace S of \mathbb{R}^n is a set of vectors $\vec{v}_1, \ldots, \vec{v}_k$ such that:

 $1. \ S = \mathrm{span}(\vec v_1, \dots, \vec v_k)$, and 2. $\vec{v}_1, \ldots, \vec{v}_k$ are linearly independent.

Condition (2) ensures that none of the vectors is redundant, so we aren't being wasteful. Giving a basis for a subspace is a good way to "describe" it.

Example 3.42: The standard unit vectors $\vec{e}_1,\ldots,\vec{e}_n$ in \mathbb{R}^n are linearly independent and span \mathbb{R}^n , so they form a basis of \mathbb{R}^n called the **standard basis**.

Example: We saw above that $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ span \mathbb{R}^2 . They are also linearly independent, so they are a basis for \mathbb{R}^2 . \mathbb{R}^2

Note that $\begin{bmatrix} 1\cr 0\cr\end{bmatrix}$ and $\begin{bmatrix} 0\cr 1\cr\end{bmatrix}$ are another basis for $\mathbb{R}^2.$ A subspace will in general have many bases, but we'll see soon that they all have the same number of vectors! (Grammar: one basis, two bases.) \mathbb{R}^2

New material

Example: Let $\mathcal P$ be the plane through the origin with direction vectors

and $\vert 4 \vert$. Then $\mathcal P$ is a subspace of $\mathbb R^3$ and these two vectors are a basis for $\mathcal{P}.$ $\overline{}$ $\overline{}$ $\overline{}$ 1 3 5 \overline{a} \overline{a} $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ 2 4 6 \overline{a} \overline{a} $\big\}$. Then $\mathcal P$ is a subspace of $\mathbb R^3$

Example: Find a basis for
$$
S = \text{span}(\begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}).
$$

Solution:

You can see by inspection that these vectors aren't linearly independent:

the third is the sum of the first two. So $S = \operatorname{span}(\left[\begin{array}{c} {\bf 0} \cr {\bf 0}\end{array} \right],\left[\left. \begin{array}{c} {\bf -2} \cr {\bf 1}\end{array} \right]).$ These $\overline{}$ 3 0 2 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ -2 1 1 \overline{a} \mathbf{I} \overline{a}

two vectors are linearly independent, so they form a basis for S_\cdot

In more complicated situations, there are two ways to find a basis of the span of a set of vectors. The first way uses the following result:

Theorem 3.20: Let A and B be row equivalent matrices. Then $\operatorname{row}(A)=\operatorname{row}(B).$

Proof: Suppose B is obtained from A by performing elementary row operations. Each of these operations expresses the new row as a linear combination of the previous rows. So every row of B is a linear combination of the rows of $A.$ So $\mathrm{row}(B)\subseteq \mathrm{row}(A).$

On the other hand, each row operation is reversible, so reversing the above argument gives that $\mathrm{row}(A)\subseteq \mathrm{row}(B)$. Therefore, $row(A) = row(B).$

This will be useful, because it is easy to understand the row space of a matrix in row echelon form.

Example: Let's redo the above example. Consider the matrix

$$
A=\begin{bmatrix}3 & 0 & 2\\-2 & 1 & 1\\1 & 1 & 3\end{bmatrix}
$$

whose rows are the given vectors. So $S = \mathrm{row}(A).$

Row reduction produces the following matrix

$$
B=\begin{bmatrix} 1 & 0 & 2/3 \\ 0 & 1 & 7/3 \\ 0 & 0 & 0 \end{bmatrix}
$$

which is in reduced row echelon form. By Theorem 3.20, $S=\mathrm{row}(B)$. But the first two rows clearly give a basis for $\mathrm{row}(B)$, so another solution to the

question is $\begin{array}{|c|c|c|c|c|c|} \hline 0&1&\text{and} &1&1 \ \hline \end{array}$. $\overline{}$ $\overline{}$ $\overline{}$ 1 0 $2/3$ \overline{a} \mathbf{I} \overline{a} \overline{a} \overline{a} $\overline{}$ 0 1 $7/3$ \overline{a} \mathbf{I} \overline{a}

Theorem: If R is a matrix in row echelon form, then the nonzero rows of R form a basis for $\mathrm{row}(R).$

Example: Let

$$
R=\begin{bmatrix}1&2&3&4\\0&5&6&7\\0&0&0&8\\0&0&0&0\end{bmatrix}=\begin{bmatrix}\vec{a}_1\\ \vec{a}_2\\ \vec{a}_3\\ \vec{a}_4\end{bmatrix}
$$

 $\mathrm{row}(R)$ is the span of the nonzero rows, since zero rows don't contribute. So we just need to see that the nonzero rows are linearly independent. If we had $c_1\vec a_1 + c_2\vec a_2 + c_3\vec a_3 = \vec 0$, then $c_1=0$, by looking at the first component. So $5c_2=0$, by looking at the second component. And so $8c_3 = 0$, by looking at the fourth component. So $c_1 = c_2 = c_3 = 0$.

The same argument works in general, by looking at the pivot (leading) columns, and this proves the Theorem.

This gives rise to the **row method** for finding a basis for a subspace *S* spanned by some vectors $\vec{v}_1, \ldots, \vec{v}_k$:

- $1.$ Form the matrix A whose rows are $\vec{v}_1, \ldots, \vec{v}_k$, so $S = \mathrm{row}(A).$
- 2. Reduce A to row echelon form R .
- 3. The nonzero rows of R will be a basis of $S = \mathrm{row}(A) = \mathrm{row}(R).$

Notice that the vectors you get are usually different from the vectors you

started with. Given $S = \mathrm{span}(\vec{v}_1, \dots, \vec{v}_k)$, one can always find a basis for S which just omits some of the given vectors. We'll explain this next.

Suppose we form a matrix A whose <u>columns</u> are $\vec{v}_1,\ldots,\vec{v}_k$. A nonzero solution to the system $A\vec{x}=\vec{0}$ is exactly a dependency relationship between the given vectors. Also, recall that if R is row equivalent to A , then $R\vec{x}=\vec{0}$ has the same solutions as $A\vec{x}=\vec{0}$. This means that the columns of R have *the same* dependency relationships as the columns of A .

Example 3.47: Find a basis for the column space of

$$
A=\begin{bmatrix}1&1&3&1&6\\2&-1&0&1&-1\\-3&2&1&-2&1\\4&1&6&1&3\end{bmatrix}
$$

Solution: The reduced row echelon form is

$$
R=\begin{bmatrix}1&0&1&0&-1\\0&1&2&0&3\\0&0&0&1&4\\0&0&0&0&0\end{bmatrix}
$$

Write \vec{r}_i for the columns of R and \vec{a}_i for the columns of A . You can see immediately that $\vec{r}_3 = \vec{r}_1 + 2 \vec{r}_2$ and $\vec{r}_5 = -\vec{r}_1 + 3 \vec{r}_2 + 4 \vec{r}_4$. So $\mathrm{col}(R)=\mathrm{span}(\vec{r}_1,\vec{r}_2,\vec{r}_4)$, and these three are linearly independent since they are standard unit vectors.

It follows that the columns of A have the same dependency relationships: $\vec{a}_3 = \vec{a}_1 + 2\vec{a}_2$ and $\vec{a}_5 = -\vec{a}_1 + 3\vec{a}_2 + 4\vec{a}_4$. Also, \vec{a}_1 , \vec{a}_2 and \vec{a}_4 must be linearly independent. So a basis for $\operatorname{col}(A)$ is given by $\vec a_1$, $\vec a_2$ and $\vec a_4.$

Note that these are the columns corresponding to the leading $\boldsymbol{1}$'s in $R!$

Warning: Elementary row operations change the column space! So $\mathrm{col}(A)\neq\mathrm{col}(R)$. So while \vec{r}_1 , \vec{r}_2 and \vec{r}_4 are a basis for $\mathrm{col}(R)$, they are not a solution to the question asked.

The other kind of subspace that arises a lot is the **null space** of a matrix A , the subspace of solutions to the homogeneous system $A\vec{x}=\vec{0}.$ We learned in Chapter 2 how to find a basis for this subspace, even though we didn't use this terminology.

Example 3.48: Find a basis for the null space of the 4×5 matrix A above.

Solution: The reduced row echelon form of $[A \mid \vec{0}\,]$ is

$$
[R \mid \vec{0}\,] =\, \left[\begin{array}{cccc|c}1 & 0 & 1 & 0 & -1 & 0 \\0 & 1 & 2 & 0 & 3 & 0 \\0 & 0 & 0 & 1 & 4 & 0 \\0 & 0 & 0 & 0 & 0 & 0\end{array}\right]
$$

We see that x_3 and x_5 are free variables, so we let $x_3 = s$ and $x_5 = t$ and use back substitution to find that

$$
\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = s \begin{bmatrix} -1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ -3 \\ 0 \\ -4 \\ 1 \end{bmatrix} \quad \text{(See text.)}
$$

Therefore, the two column vectors shown form a basis for the null space.

The vectors that arise in this way will always be linearly independent, since if all x_i 's are 0 , then the free variables must be zero, so the parameters must be zero.

Summary

Finding bases for $\mathrm{row}(A)$, $\mathrm{col}(A)$ and $\mathrm{null}(A)$:

- 1. Find the reduced row echelon form R of A .
- 2. The nonzero rows of R form a basis for $\mathrm{row}(A) = \mathrm{row}(R).$
- 3. The columns of A that correspond to the columns of R with leading 1 's

form a basis for $\operatorname{col}(A).$ 4. Use back substitution to solve $R\vec{x}=\vec{0}$; the vectors that arise are a basis for $\operatorname{null}(A)=\operatorname{null}(R).$

You just need to do row reduction once to answer all three questions!

We have seen two ways to compute a basis of a span of a set of vectors. One is to make them the columns of a matrix, and the other is to make them the rows. The column method produces a basis using vectors from the original set. Both ways require about the same amount of work.

Similarly, if asked to find a basis for $\mathrm{row}(A)$, one could use the column method on A^T .

Dimension

We have seen that a subspace has many bases. Have you noticed anything about the number of vectors in each basis?

Theorem 3.23: Let S be a subspace of $\mathbb{R}^n.$ Then any two bases for S have the same number of vectors.

Idea of proof:

Suppose that $\{\vec{u}_1, \vec{u}_2\}$ and $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ were both bases for S . We'll show that this is impossible, by showing that $\vec{v}_1,\vec{v}_2,\vec{v}_3$ are linearly dependent. Since $\{\vec{u}_1, \vec{u}_2\}$ is a basis, we can express each \vec{v}_i in terms of the \vec{u}_j 's:

> $\vec{v}_1 \; = a_{11} \vec{u}_1 + a_{21} \vec{u}_2$ $\vec{v}_2 \; = a_{12} \vec{u}_1 + a_{22} \vec{u}_2$ $\vec{v}_3 \; = a_{13} \vec{u}_1 + a_{23} \vec{u}_2$

Then

$$
\begin{aligned} &c_1\vec{v}_1+c_2\vec{v}_2+c_3\vec{v}_3\\&=c_1(a_{11}\vec{u}_1+a_{21}\vec{u}_2)+c_2(a_{12}\vec{u}_1+a_{22}\vec{u}_2)+c_3(a_{13}\vec{u}_1+a_{23}\vec{u}_2)\\&=(c_1a_{11}+c_2a_{12}+c_3a_{13})\vec{u}_1+(c_1a_{21}+c_2a_{22}+c_3a_{23})\vec{u}_2 \end{aligned}
$$

$$
\begin{aligned}c_1a_{11}+c_2a_{12}+c_3a_{13}\;&=0\\c_1a_{21}+c_2a_{22}+c_3a_{23}\;&=0\end{aligned}
$$

has nontrivial solutions! (Why?) Therefore, we can find nontrivial c_1 , c_2 , c_3 such that

$$
c_1\vec{v}_1+c_2\vec{v}_2+c_3\vec{v}_3=\vec{0}\qquad \Box
$$

A very similar argument works for the general case.

Definition: The number of vectors in a basis for a subspace S is called the **dimension** of S , denoted $\dim S$.

Example: $\dim \mathbb{R}^n = n$

Example: If S is a line through the origin in \mathbb{R}^2 or \mathbb{R}^3 , then $\dim S = 1$

Example: If S is a plane through the origin in \mathbb{R}^3 , then $\dim S = 2$

$$
\textbf{Example: If } S = \mathrm{span}(\begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}) \text{, then } \dim S = 2
$$