Math 1600A Lecture 2, Section 2, 8 Sept 2014

Announcements:

Read Section 1.2 for next class. Work through homework problems.

Lecture notes (this page) available from course web page. Also look for **announcements** there.

No tutorials this week. There is a quiz in tutorials next week.

Please **read over syllabus**, especially before e-mailing me with questions, as it covers all of the main points.

Let me know if the bookstore runs out of **texts or combo packs**.

Review of last lecture:

A vector can be represented by its list of components, e.g. $\left[1, 2, -1\right]$ is a vector in $\mathbb{R}^3.$

We write \mathbb{R}^n for the set of all vectors with n real components, e.g. $[1, 2, 3, 4, 5, 6, 7]$ is in \mathbb{R}^7 .

We also often write vectors as column vectors, e.g. $\begin{bmatrix} 1 \ 2 \end{bmatrix}$. 2

 $\textbf{Vector addition:} \; [u_1, \ldots, u_n] + [v_1, \ldots, v_n] := [u_1 + v_1, \ldots, u_n + v_n].$ E.g. $\left[3,2,1\right] +\left[1,0,-1\right] =\left[4,2,0\right]$.

 ${\sf Scalar}$ multiplication: $c[u_1, \ldots, u_n] := [cu_1, \ldots, cu_n].$

E.g. $2[1, 2, 3, 4, 5] = [2, 4, 6, 8, 10]$.

Zero vector: $\vec{0} := [0, 0, \ldots, 0]$.

New material: Section 1.1, continued: Properties of vector operations

The picture to the right shows geometrically that vector addition is *commutative:* $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ *.*

In this true in \mathbb{R}^n ? Let's check:

$$
\begin{aligned} \vec{u}+\vec{v}\,&=[u_1+v_1,\,\ldots,\,u_n+v_n]\\&=[v_1+u_1,\,\ldots,\,v_n+u_n]\\&=\vec{v}+\vec{u}. \end{aligned}
$$

Many other properties that hold for real numbers also hold for vectors: Theorem 1.1. But we'll see differences later.

Example: Simplification of an expression:

$$
3\vec{b} + 2(\vec{a} - 4\vec{b}) \\ = 3\vec{b} + 2\vec{a} - 8\vec{b} \\ = 2\vec{a} - 5\vec{b}
$$

 $\bf{True/false:}$ For every vector \vec{u} , we have $2\vec{u} = \vec{u} + \vec{u}$.

True, since both sides have components $[2u_1, \ldots, 2u_n].$ Or, from the distributive law (Theorem 1.1(f)) and Theorem 1.1(h), we have

 $2\vec{u} = (1+1)\vec{u} = 1\vec{u} + 1\vec{u} = \vec{u} + \vec{u}.$

 $\textsf{True/false:}$ For every vector \vec{u} , we have $2\vec{u}\neq 3\vec{u}$.

False. If $\vec{u} = \vec{0}$, then $2\vec{u} = \vec{0} = 3\vec{u}$.

An important real-world application:

Pac-Man: Google's version, and How the ghosts move.

Derive an equation for Inky's target on board.

Linear combinations

 ${\bf Definition:}$ A vector \vec{v} is a linear combination of vectors $\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_k$ if there are scalars c_1, c_2, \ldots, c_k so that

$$
\vec{v}=c_1\vec{v}_1+\cdots+c_k\vec{v}_k.
$$

The numbers c_1, \ldots, c_k are called the coefficients. They are not necessarily unique.

Example: Is
$$
\begin{bmatrix} 1 \\ -1 \end{bmatrix}
$$
 a linear combination of $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$?

Yes, since

$$
\begin{bmatrix} 1 \\ -1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} 2 \\ -1 \end{bmatrix} - 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$
 (Check!)

Note: We also have

$$
\begin{bmatrix} 1 \\ -1 \end{bmatrix} = -\frac{1}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{2}{3} \begin{bmatrix} 2 \\ -1 \end{bmatrix} + 0 \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$
 (Check!)

and many more possibilities.

We will learn later how to find all solutions.

Example: Is
$$
\begin{bmatrix} 1 \\ -1 \end{bmatrix}
$$
 a linear combination of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$?

No, since any linear combination of $\begin{bmatrix} 1\cr 0\cr\end{bmatrix}$ and $\begin{bmatrix} 2\cr 0\cr\end{bmatrix}$ has a zero as the second component.

Example: Is
$$
\begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$
 a linear combination of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$?

Yes. The zero vector is a linear combination of any set of vectors, since you can just take $c_1 = c_2 = \cdots = c_k = 0$.

Coordinates

Example: Express
$$
\vec{w}_1 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}
$$
 as a linear combination of $\vec{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

We can solve this by using \vec{u} and \vec{v} to make a new coordinate system in the plane. Use the board to show that $\vec{w}_1 = 2\vec{u} + \vec{v}$.

Similarly, show that $\vec{w}_2 = \left| \begin{array}{c} 4 \ 1 \end{array} \right|$ can be expressed as $\vec{w}_2 = \vec{u} - 2 \vec{v}$. -1 $\vec{w}_2 = \vec{u} - 2\vec{v}.$

Note that in this case the coefficients are unique. In this situation, the coefficients are called the coordinates with respect to \vec{u} and \vec{v} . So the coordinates of \vec{w}_1 with respect to \vec{u} and \vec{v} are 2 and 1 , and the coordinates of \vec{w}_2 with respect to \vec{u} and \vec{v} are 1 and $-2.$

Working in a different coordinate system is a powerful tool.

Binary vectors

 $\mathbb{Z}_2:=\{0,1\}$, a set with two elements.

Multiplication is as usual.

Addition: $0 + 0 = 0$, $0 + 1 = 1$, $1 + 0 = 1$, $1 + 1 = 0$.

vectors with n components in \mathbb{Z}_2 .

E.g. $[0,1,1,0,1]\in\mathbb{Z}_2^5$.

in \mathbb{Z}_2^3 . $\mathbb{Z}_2^n :=$ vectors with n comp
E.g. $[0,1,1,0,1] \in \mathbb{Z}_2^5$.
 $[0,1,1] + [1,1,0] = [1,0,1]$
There are 2^n vectors in \mathbb{Z}_2^n . $[0,1,1] + [1,1,0] = [1,0,1]$ in \mathbb{Z}_2^3

 2^n vectors in \mathbb{Z}_2^n