Math 1600 Lecture 21, Section 2, 24 Oct 2014

Announcements:

Read Markov chains part of Section 3.7 for next class. Work through recommended homework questions.

Extra Midterm Review: Today, 4:30-6:00pm, MC105B. Bring questions.

Midterm: Saturday, October 25, 7-10pm. Rooms, based on first letter of last name: A-E: UCC37. F-Ma: UCC56 (this room). Mc-Z: UCC146. Be sure to write in the correct room! It will cover the material up to and including Monday's lecture. **Review the policies about illness on course website.**

Help Centers: Monday-Friday 2:30-6:30 in MC106.

Last class, we finished Section 3.5. That was a key section, so please study it carefully. We won't use that material today, so I will jump right into Section 3.6.

Section 3.6: Linear Transformations

Given an $m \times n$ matrix A, we can use A to transform a column vector in \mathbb{R}^n into a column vector in \mathbb{R}^m . We write:

$$T_{A}(\vec{x}) = A\vec{x} \quad \text{for } \vec{x} \text{ in } \mathbb{R}^{n}$$

Example: If $A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 4 & 5 \end{bmatrix}$ then

$$T_{A}\left(\begin{bmatrix} -1 \\ 2 \end{bmatrix} \right) = A \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = -1 \begin{bmatrix} 0 \\ 2 \\ 4 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$$

In general,

$$T_A\left(egin{bmatrix}x\\y\end{bmatrix}
ight)=Aegin{bmatrix}x\\y\end{bmatrix}=egin{bmatrix}0&1\\2&3\\4&5\end{bmatrix}egin{bmatrix}x\\y\end{bmatrix}=xegin{bmatrix}0\\2\\4\end{bmatrix}+yegin{bmatrix}1\\3\\5\end{bmatrix}=egin{bmatrix}y\\2x+3y\\4x+5y\end{bmatrix}$$

Note that the matrix A is visible in the last expression.

Here is an applet giving many examples.

Any rule T that assigns to each \vec{x} in \mathbb{R}^n a unique vector $T(\vec{x})$ in \mathbb{R}^m is called a **transformation** from \mathbb{R}^n to \mathbb{R}^m and is written $T: \mathbb{R}^n \to \mathbb{R}^m$.

For our A above, we have $T_A: \mathbb{R}^2 \to \mathbb{R}^3$. T_A is in fact a *linear* transformation.

Definition: A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is called a **linear** transformation if:

1. $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ for all \vec{u} and \vec{v} in \mathbb{R}^n , and 2. $T(c\vec{u}) = c T(\vec{u})$ for all \vec{u} in \mathbb{R}^n and all scalars c.

You can check directly that our T_A is linear. For example,

$$T_A\left(cigg[x \ y \end{bmatrix}
ight) = T_A\left(igg[cx \ cy \end{bmatrix}
ight) = egin{bmatrix} cy \ 2cx+3cy \ 4cx+5cy \end{bmatrix} = cigg[y \ 2x+3y \ 4x+5y \end{bmatrix} = c\,T_A\left(igg[x \ y \end{bmatrix}
ight)$$

Check condition (1) yourself, or see Example 3.55.

In fact, every T_A is linear:

Theorem 3.30: Let A be an m imes n matrix. Then $T_A:\mathbb{R}^n o\mathbb{R}^m$ is a linear transformation.

Proof: Let $ec{u}$ and $ec{v}$ be vectors in \mathbb{R}^n and let $c\in\mathbb{R}$. Then

$$T_A(ec{u}+ec{v})=A(ec{u}+ec{v})=Aec{u}+Aec{v}=T_A(ec{u})+T_A(ec{v})$$

and

$$T_A(cec{u}) = A(cec{u}) = c\,Aec{u} = c\,T_A(ec{u})$$

Example 3.56: Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that sends each point to its reflection in the *x*-axis. Show that *F* is linear.

Solution: We need to show that

$$F(ec{u}+ec{v})=F(ec{u})+F(ec{v}) \quad ext{and} \quad F(cec{u})=c\,F(ec{u})$$

Give a geometrical explanation on the board.

Algebraically, note that $F(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x \\ -y \end{bmatrix}$, from which you can check directly that F is linear. (Exercise.)

Or, observe that
$$F(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
, so $F = T_A$ where $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

Example: Let $N: \mathbb{R}^2 o \mathbb{R}^2$ be the transformation

$$N\left(egin{bmatrix}x\\y\end{bmatrix}
ight):=\ egin{bmatrix}xy\\x+y\end{bmatrix}$$

Is N linear?

Solution: No. For example,
$$N\begin{pmatrix} \begin{bmatrix} 1\\1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix}$$
 but $N\begin{pmatrix} 2 \begin{bmatrix} 1\\1 \end{bmatrix} \end{pmatrix} = N\begin{pmatrix} \begin{bmatrix} 2\\2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 4\\4 \end{bmatrix} \neq 2\begin{bmatrix} 1\\2 \end{bmatrix}$.

It turns out that *every* linear transformation is a matrix transformation.

Theorem 3.31: Let $T: \mathbb{R}^n o \mathbb{R}^m$ be a linear transformation. Then $T=T_A$, where

$$A = \left[T(\vec{e}_1) \mid T(\vec{e}_2) \mid \cdots \mid T(\vec{e}_n) \right]$$

Proof: We just check:

$$egin{aligned} T(ec{x}) &= T(x_1ec{e}_1 + \dots + x_nec{e}_n) \ &= x_1T(ec{e}_1) + \dots + x_nT(ec{e}_n) & ext{ since } T ext{ is linear } \ &= \left[\left. T(ec{e}_1) \mid T(ec{e}_2) \mid \dots \mid T(ec{e}_n)
ight] \left[egin{aligned} x_1 \ dc{e}_n \ dc{e}_n \end{array}
ight] \ &= Aec{x} = T_A(ec{x}) & \Box \end{aligned}$$

The matrix A is called the **standard matrix** of T and is written [T].

Example: Consider the transformation $T: \mathbb{R}^3
ightarrow \mathbb{R}^2$ defined by

$$T\left(egin{bmatrix}x\\y\\z\end{bmatrix}
ight)=\begin{bmatrix}2x+3y-z\\y+z\end{bmatrix}$$

Is T linear? If so, find [T]. On board.

Example 3.58: Let $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ be rotation by an angle θ counterclockwise about the origin. Show that R_{θ} is linear and find its standard matrix.

Solution: We need to show that

$$R_ heta(ec{u}+ec{v})=R_ heta(ec{u})+R_ heta(ec{v}) \quad ext{and} \quad R_ heta(cec{u})=c\,R_ heta(ec{u})$$

A geometric argument shows that $R_{ heta}$ is linear. On board.

To find the standard matrix, we note that

$$R_{\theta}\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix} \text{ and } R_{\theta}\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}-\sin\theta\\\cos\theta\end{bmatrix}$$

Therefore, the standard matrix of R_{θ} is $\begin{bmatrix}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{bmatrix}$.

Now that we know the matrix, we can compute rotations of arbitrary

vectors. For example, to rotate the point (2,-1) by 60° :

$$egin{aligned} R_{60}\left(egin{bmatrix}2\-1\end{bmatrix}
ight) &= egin{bmatrix}\cos 60^\circ & -\sin 60^\circ\\sin 60^\circ\end{bmatrix}egin{bmatrix}2\-1\end{bmatrix}\ &= egin{bmatrix}1/2 & -\sqrt{3}/2\\sqrt{3}/2 & 1/2\end{bmatrix}egin{bmatrix}2\-1\end{bmatrix} &= egin{bmatrix}(2+\sqrt{3})/2\-1\end{bmatrix} = egin{bmatrix}(2+\sqrt{3})/2\(2\sqrt{3}-1)/2\end{bmatrix} \end{aligned}$$

Rotations will be one of our main examples.

The applet gives examples involving rotations.

New linear transformations from old

If $T: \mathbb{R}^m \to \mathbb{R}^n$ and $S: \mathbb{R}^n \to \mathbb{R}^p$, then $S(T(\vec{x}))$ makes sense for \vec{x} in \mathbb{R}^m . The **composition** of S and T is the transformation $S \circ T: \mathbb{R}^m \to \mathbb{R}^p$ defined by

 $(S \circ T)(ec{x}) = S(T(ec{x})).$

If S and T are linear, it is easy to check that this new transformation $S\circ T$ is automatically linear. For example,

$$egin{aligned} (S \circ T)(ec{u} + ec{v}) &= S(T(ec{u} + ec{v})) = S(T(ec{u}) + T(ec{v})) \ &= S(T(ec{u})) + S(T(ec{v})) = (S \circ T)(ec{u}) + (S \circ T)(ec{v}). \end{aligned}$$

Any guesses for how the the matrix for $S \circ T$ is related to the matrices for S and T?

Theorem 3.32: $[S \circ T] = [S][T]$, where $[\]$ is used to denote the matrix of a linear transformation.

Proof: Let A = [S] and B = [T]. Then

$$(S\circ T)(ec x)=S(T(ec x))=S(Bec x)=A(Bec x)=(AB)ec x$$

so $[S \circ T] = AB.$ \Box

It's because of this that matrix multiplication is defined how it is! Notice also

that the condition on the sizes of matrices in a product matches the requirement that ${\cal S}$ and ${\cal T}$ be composable.

Example 3.61: Find the standard matrix of the transformation that rotates 90° counterclockwise and then reflects in the *x*-axis. How do $F \circ R_{90}$ and $R_{90} \circ F$ compare? On board.