
Math 1600 Lecture 22, Section 2, 27 Oct 2014

Announcements:

Read Sections 4.0 and 4.1 for next class. Work through recommended
homework questions.

Midterm results: Grades will be posted on OWL over the next few days.
Midterms will be returned at the tutorials next week.

Tutorials: No tutorials this week! Fall break Thurs/Fri.

Office hour: today, 3:00-3:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106 except Thurs/Fri.

Review of last lecture: Section 3.6: Linear
Transformations

Given an  matrix , we can use  to transform a column vector in
 into a column vector in . We write:

Any rule  that assigns to each  in  a unique vector  in  is
called a transformation from  to  and is written .

Definition: A transformation  is called a linear
transformation if:
1.  for all  and  in , and
2.  for all  in  and all scalars .

Theorem 3.30: Let  be an  matrix. Then  is a linear
transformation.

Theorem 3.31: Let  be a linear transformation. Then
, where

m × n A A
Rn Rm

( ) = A for  in TA x⃗ x⃗ x⃗ Rn

T x⃗ Rn T ( )x⃗ Rm

Rn Rm T : →Rn Rm

T : →Rn Rm

T ( + ) = T ( ) + T ( )u⃗ v ⃗ u⃗ v ⃗ u⃗ v ⃗ Rn

T (c ) = c T ( )u⃗ u⃗ u⃗ Rn c

A m × n : →TA Rn Rm

T : →Rn Rm

T = TA
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The matrix  is called the standard matrix of  and is written .

Example 3.58: Let  be rotation by an angle 
counterclockwise about the origin. Show that  is linear and find its
standard matrix.

Solution: A geometric argument shows that  is linear.

To find the standard matrix, we note that

Therefore, the standard matrix of  is .

New linear transformations from old

If  and , then  makes sense for  in
. The composition of  and  is the transformation 

defined by

If  and  are linear, it is easy to check that this new transformation 
is automatically linear.

Theorem 3.32: .

We saw an applet illustrating linear transformations.

New material

Example: It is geometrically clear that . This tells us that

A = [ T ( ) ∣ T ( ) ∣ ⋯ ∣ T ( ) ]e ⃗ 1 e ⃗ 2 e ⃗ n

A T [T ]

: →Rθ R2 R2 θ
Rθ

Rθ

([ ]) = [ ] and ([ ]) = [ ]Rθ
1
0

cos θ

sin θ
Rθ

0
1

− sin θ

cos θ

Rθ [ ]cos θ

sin θ

− sin θ

cos θ

T : →Rm Rn S : →Rn Rp S(T ( ))x⃗ x⃗ 
Rm S T S ∘ T : →Rm Rp

(S ∘ T )( ) = S(T ( )).x⃗ x⃗ 

S T S ∘ T

[S ∘ T ] = [S][T ]

∘ =Rθ Rϕ Rθ+ϕ
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This implies some trigonometric identities. For example, looking at the
top-left entry, we find that

Other trig identities also follow.

Note that  is rotation by zero degrees, so . We say that  is

the identity transformation, which we write . Similarly,
.

Since , we must have .

This is how I came up with the answer  to the

challenge problem in Lecture 15.

Our new point of view about matrix multiplication gives us a geometrical
way to understand it!

Inverses of Linear Transformations

Since , it follows that . So

. See Example 3.62 for details.

Definition: Let  and  be linear transformations from  to . Then 
and  are inverse transformations if  and . When
this is the case, we say that  and  are invertible and are inverses.

The same argument as for matrices shows that an inverse is unique when it

exists, so we write  and .

Theorem 3.33: Let  be a linear transformation. Then  is
invertible if and only if  is an invertible matrix. In this case,

.

[ ] = [ ] [ ]cos(θ + ϕ)
sin(θ + ϕ)

− sin(θ + ϕ)
cos(θ + ϕ)

cos(θ)
sin(θ)

− sin(θ)
cos(θ)

cos(ϕ)
sin(ϕ)

− sin(ϕ)
cos(ϕ)

cos(θ + ϕ) = cos(θ) cos(ϕ) − sin(θ) sin(ϕ)

R0 ( ) =R0 x⃗ x⃗ R0
I : →R2 R2

= IR360

∘ ∘ = = IR120 R120 R120 R360 [ = [I] = IR120]3

[ ] = [ ]R120
−1/2

/23√
− /23√

−1/2

∘ = = IR60 R−60 R0 [ ][ ] = IR60 R−60

[ ] = [R−60 R60]−1

S T Rn Rn S
T S ∘ T = I T ∘ S = I

S T

S = T −1 T = S−1

T : →Rn Rn T
[T ]

[ ] = [TT −1 ]−1
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The argument is easy and is essentially what we did for .

Question: Is projection onto the -axis invertible?

Question: Is reflection in the -axis invertible?

Question: Is translation a linear transformation?

Section 3.7: Markov Chains

Example 3.64: 200 people are testing two
brands of toothpaste, Brand A and Brand B.
Each month they are allowed to switch
brands. The research firm observes the
following:

Of those using Brand A in a given month, 70% continue in the following
month and 30% switch to B.
Of those using Brand B in a given month, 80% continue in the following
month and 20% switch to A.

This is called a Markov chain. There are definite states, and from each
state there is a transition probability for moving to another state at each
time step. These probabilities are constant and depend only on the current
state.

R60

x

x
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Suppose at the start that 120 people use Brand A and 80 people use Brand
B. Then, in the next month,

and

This is a matrix equation:

Write  for the transition matrix and  for the state vector after 
months have gone by. Then . So

and we see that there are 90 people using Brand A and 110 using Brand B
after 2 months.

We can also work with the percentage of people using each brand. Then

 and . Vectors with

non-negative components that sum to 1 are called probability vectors

Note that  is a stochastic matrix: this means that it is square and that
each column is a probability vector.

The column indices of  correspond to the current state and the row indices
correspond to the next state. The entry  is the probability that you

transition from state  to state  in one time step, where we now label the
states with numbers.

Multiple steps: Can we compute the probability
that we go from state  to state  in two steps?

0.70(120) + 0.20(80) = 100 will use Brand A

0.30(120) + 0.80(80) = 100 will use Brand B

[ ] [ ] = [ ]0.70
0.30

0.20
0.80

120
80

100
100

P x⃗ k k
= Px⃗ k+1 x⃗ k

= P = [ ] [ ] = [ ]x⃗ 2 x⃗ 1
0.70
0.30

0.20
0.80

100
100

90
110

= [ ] = [ ]x⃗ 0
120/200
80/200

0.60
0.40

P = [ ]x⃗ 0
0.50
0.50

P

P
Pij

j i

j i
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Well, , so the matrix 
computes this transition:

So the probability of going from Brand A to Brand B

after two steps is .

More generally,  is the probability of going from state  to state  in 

steps.

Long-term behaviour: By multiplying by , you can show that the state
evolves as follows:

with 40% of the people using Brand A in the long run. Since

once we reach this state, we don't leave. A state  with  is called a
steady state vector. We'll prove below that every Markov chain has a
steady state vector!

Here's how to find it. We want to find  such that . The
augmented system is

which row reduces to

= P =xk+2 xk+1 P 2xk P 2

= [ ] [ ] = [ ]P 2 0.7
0.3

0.2
0.8

0.7
0.3

0.2
0.8

0.55
0.45

0.30
0.70

( = 0.45 = 0.21 + 0.24P 2)21

(P k)ij j i k

P

[ ] , [ ] , [ ] , [ ] , [ ] , [ ] ,
0.60
0.40

0.50
0.50

0.45
0.55

0.425
0.575

0.412
0.588

0.406
0.594

[ ] , [ ] , [ ] , [ ] , [ ] , …
0.403
0.597

0.402
0.598

0.401
0.599

0.400
0.600

0.400
0.600

[ ] [ ] = [ ] ,
0.70
0.30

0.20
0.80

0.4
0.6

0.4
0.6

x⃗ P =x⃗ x⃗ 

x⃗ (I − P) =x⃗ 0⃗ 

[I − P ∣ ] = [ ]0⃗ 0.30
−0.30

−0.20
0.20

0
0
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The solution is

We'd like a probability vector, so  which means that .

This gives  as we found above.

Theorem: Every Markov chain has a non-trivial steady state vector.

This appears in the book as Theorem 4.30 in Section 4.6.

Proof: Let  be the transition matrix. We want to find a non-trivial solution

to . By the fundamental theorem of invertible matrices and

the fact that , this is equivalent to

 having a non-trivial solution. That is, finding a non-trivial 
such that

But since  is a stochastic matrix, we always have

So therefore  also has a (different) non-trivial solution.

Example 3.65: A Markov chain can have more than two states. A rat is in a
maze with three rooms, and always chooses to go through one of the doors
with equal probability. Draw the state diagram, determine the transition
matrix  and describe how to find a steady-state vector.

[ ]1
0

−2/3
0

0
0

= t, = tx1
2
3

x2

t + t = 12
3 t = 3/5

= [ ]x⃗ 
0.4
0.6

P

(I − P) =x⃗ 0⃗ 

rank(I − P) = rank((I − P ))T

(I − P =)T
x⃗ 0⃗ x⃗ 

= (since = I).P T x⃗ x⃗ I T

P

=P T

⎡
⎣⎢⎢

1

⋮
1

⎤
⎦⎥⎥

⎡
⎣⎢⎢

1

⋮
1

⎤
⎦⎥⎥

P =x⃗ x⃗ □

P

7 of 8



1

2 3

Solution: Draw state diagram on board.

From this, we find the transition matrix

The  entry is the probability of going from room  to room .

A steady state vector is a vector  such that . That is,

, or . To find a non-trivial steady state vector for
this Markov chain, we solve the homogeneous system with coefficient
matrix :

In RREF:

So ,  and . If we want a probability vector, then we

want , so , so we get .

We'll probably study Markov chains again in Section 4.6.

P =
⎡
⎣⎢

0
1/2
1/2

1/3
0

2/3

1/3
2/3

0

⎤
⎦⎥

Pij j i

x⃗ P =x⃗ x⃗ 
− P =x⃗ x⃗ 0⃗ (I − P) =x⃗ 0⃗ 

I − P

⎡
⎣⎢⎢

1
−1/2
−1/2

−1/3
1

−2/3

−1/3
−2/3

1

0
0
0

⎤
⎦⎥⎥

⎡
⎣⎢⎢

1
0
0

0
1
0

−2/3
−1

0

0
0
0

⎤
⎦⎥⎥

= tx3 = tx2 = tx1
2
3

t + t + t = 12
3 t = 3/8

⎡
⎣⎢

2/8
3/8
3/8

⎤
⎦⎥
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