Math 1600 Lecture 22, Section 2, 27 Oct 2014

Announcements:

Read Sections 4.0 and 4.1 for next class. Work through recommended homework questions.

Midterm results: Grades will be posted on OWL over the next few days. Midterms will be returned at the tutorials **next** week.

Tutorials: No tutorials this week! Fall break Thurs/Fri.

Office hour: today, 3:00-3:30, MC103B.

Help Centers: Monday-Friday 2:30-6:30 in MC 106 except Thurs/Fri.

Review of last lecture: Section 3.6: Linear Transformations

Given an $m \times n$ matrix A, we can use A to transform a column vector in \mathbb{R}^n into a column vector in \mathbb{R}^m . We write:

$$T_A(\vec{x}) = A\vec{x} \quad \text{for } \vec{x} \text{ in } \mathbb{R}^n$$

Any rule T that assigns to each \vec{x} in \mathbb{R}^n a unique vector $T(\vec{x})$ in \mathbb{R}^m is called a **transformation** from \mathbb{R}^n to \mathbb{R}^m and is written $T: \mathbb{R}^n \to \mathbb{R}^m$.

Definition: A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a **linear** transformation if:

- 1. $T(ec{u}+ec{v})=T(ec{u})+T(ec{v})$ for all $ec{u}$ and $ec{v}$ in \mathbb{R}^n , and
- 2. $T(cec{u}) = c\,T(ec{u})$ for all $ec{u}$ in \mathbb{R}^n and all scalars c.

Theorem 3.30: Let A be an m imes n matrix. Then $T_A: \mathbb{R}^n o \mathbb{R}^m$ is a linear transformation.

Theorem 3.31: Let $T:\mathbb{R}^n o\mathbb{R}^m$ be a linear transformation. Then $T=T_A$, where

$$A = \lceil T(\vec{e}_1) \mid T(\vec{e}_2) \mid \cdots \mid T(\vec{e}_n) \rceil$$

The matrix A is called the **standard matrix** of T and is written [T].

Example 3.58: Let $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ be rotation by an angle θ counterclockwise about the origin. Show that R_{θ} is linear and find its standard matrix.

Solution: A geometric argument shows that $R_{ heta}$ is linear.

To find the standard matrix, we note that

$$R_{ heta}\left(egin{bmatrix} 1 \ 0 \end{bmatrix}
ight) = egin{bmatrix} \cos heta \ \sin heta \end{bmatrix} \qquad ext{and} \qquad R_{ heta}\left(egin{bmatrix} 0 \ 1 \end{bmatrix}
ight) = egin{bmatrix} -\sin heta \ \cos heta \end{bmatrix}$$

Therefore, the standard matrix of $R_{ heta}$ is $\begin{bmatrix} \cos heta & -\sin heta \\ \sin heta & \cos heta \end{bmatrix}$.

New linear transformations from old

If $T:\mathbb{R}^m o \mathbb{R}^n$ and $S:\mathbb{R}^n o \mathbb{R}^p$, then $S(T(\vec{x}))$ makes sense for \vec{x} in \mathbb{R}^m . The **composition** of S and T is the transformation $S \circ T:\mathbb{R}^m o \mathbb{R}^p$ defined by

$$(S\circ T)(ec{x})=S(T(ec{x})).$$

If S and T are linear, it is easy to check that this new transformation $S\circ T$ is automatically linear.

Theorem 3.32:
$$[S \circ T] = [S][T]$$
 .

We saw an applet illustrating linear transformations.

New material

Example: It is geometrically clear that $R_{ heta}\circ R_{\phi}=R_{ heta+\phi}$. This tells us that

$$\begin{bmatrix} \cos(\theta+\phi) & -\sin(\theta+\phi) \\ \sin(\theta+\phi) & \cos(\theta+\phi) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix}$$

This implies some trigonometric identities. For example, looking at the top-left entry, we find that

$$\cos(\theta + \phi) = \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi)$$

Other trig identities also follow.

Note that R_0 is rotation by zero degrees, so $R_0(\vec x)=\vec x$. We say that R_0 is the **identity transformation**, which we write $I:\mathbb R^2\to\mathbb R^2$. Similarly, $R_{360}=I$.

Since $R_{120}\circ R_{120}\circ R_{120}=R_{360}=I$, we must have $\begin{bmatrix}R_{120}\end{bmatrix}^3=\begin{bmatrix}I\end{bmatrix}=I$. This is how I came up with the answer $\begin{bmatrix}R_{120}\end{bmatrix}=\begin{bmatrix}-1/2&-\sqrt{3}/2\\\sqrt{3}/2&-1/2\end{bmatrix}$ to the challenge problem in Lecture 15.

Our new point of view about matrix multiplication gives us a **geometrical** way to understand it!

Inverses of Linear Transformations

Since $R_{60}\circ R_{-60}=R_0=I$, it follows that $[R_{60}][R_{-60}]=I$. So $[R_{-60}]=[R_{60}]^{-1}$. See Example 3.62 for details.

Definition: Let S and T be linear transformations from \mathbb{R}^n to \mathbb{R}^n . Then S and T are **inverse transformations** if $S \circ T = I$ and $T \circ S = I$. When this is the case, we say that S and T are **invertible** and are **inverses**.

The same argument as for matrices shows that an inverse is unique when it exists, so we write $S=T^{-1}$ and $T=S^{-1}$.

Theorem 3.33: Let $T:\mathbb{R}^n o \mathbb{R}^n$ be a linear transformation. Then T is invertible if and only if [T] is an invertible matrix. In this case, $[T^{-1}]=[T]^{-1}$.

The argument is easy and is essentially what we did for R_{60} .

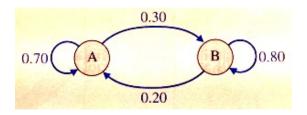
Question: Is projection onto the x-axis invertible?

Question: Is reflection in the x-axis invertible?

Question: Is translation a linear transformation?

Section 3.7: Markov Chains

Example 3.64: 200 people are testing two brands of toothpaste, Brand A and Brand B. Each month they are allowed to switch brands. The research firm observes the following:



- Of those using Brand A in a given month, 70% continue in the following month and 30% switch to B.
- Of those using Brand B in a given month, 80% continue in the following month and 20% switch to A.

This is called a **Markov chain**. There are definite states, and from each state there is a **transition probability** for moving to another state at each time step. These probabilities are constant and depend only on the current state.

Suppose at the start that 120 people use Brand A and 80 people use Brand B. Then, in the next month,

$$0.70(120) + 0.20(80) = 100$$
 will use Brand A

and

$$0.30(120) + 0.80(80) = 100$$
 will use Brand B

This is a matrix equation:

$$\begin{bmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{bmatrix} \begin{bmatrix} 120 \\ 80 \end{bmatrix} = \begin{bmatrix} 100 \\ 100 \end{bmatrix}$$

Write P for the **transition matrix** and \vec{x}_k for the **state vector** after k months have gone by. Then $\vec{x}_{k+1} = P\vec{x}_k$. So

$$ec{x}_2 = Pec{x}_1 = egin{bmatrix} 0.70 & 0.20 \ 0.30 & 0.80 \end{bmatrix} egin{bmatrix} 100 \ 100 \end{bmatrix} = egin{bmatrix} 90 \ 110 \end{bmatrix}$$

and we see that there are 90 people using Brand A and 110 using Brand B after 2 months.

We can also work with the percentage of people using each brand. Then

$$ec{x}_0=egin{bmatrix}120/200\80/200\end{bmatrix}=egin{bmatrix}0.60\0.40\end{bmatrix}$$
 and $Pec{x}_0=egin{bmatrix}0.50\0.50\end{bmatrix}$. Vectors with

non-negative components that sum to 1 are called probability vectors

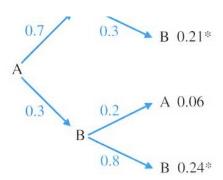
Note that P is a **stochastic matrix**: this means that it is square and that each column is a probability vector.

The column indices of P correspond to the current state and the row indices correspond to the next state. The entry P_{ij} is the probability that you transition from state j to state i in one time step, where we now label the states with numbers.

Multiple steps: Can we compute the probability that we go from state j to state i in **two** steps?

Well, $x_{k+2} = Px_{k+1} = P^2x_k$, so the matrix P^2 computes this transition:

computes this transition:
$$P^2 = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix} \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix} = \begin{bmatrix} 0.55 & 0.30 \\ 0.45 & 0.70 \end{bmatrix}$$



So the probability of going from Brand A to Brand B after two steps is $(P^2)_{21} = 0.45 = 0.21 + 0.24$.

More generally, $(P^k)_{ij}$ is the probability of going from state $m{j}$ to state $m{i}$ in ksteps.

Long-term behaviour: By multiplying by P, you can show that the state evolves as follows:

$$\begin{bmatrix} 0.60 \\ 0.40 \end{bmatrix}, \begin{bmatrix} 0.50 \\ 0.50 \end{bmatrix}, \begin{bmatrix} 0.45 \\ 0.55 \end{bmatrix}, \begin{bmatrix} 0.425 \\ 0.575 \end{bmatrix}, \begin{bmatrix} 0.412 \\ 0.588 \end{bmatrix}, \begin{bmatrix} 0.406 \\ 0.594 \end{bmatrix}, \begin{bmatrix} 0.403 \\ 0.597 \end{bmatrix}, \begin{bmatrix} 0.402 \\ 0.598 \end{bmatrix}, \begin{bmatrix} 0.401 \\ 0.599 \end{bmatrix}, \begin{bmatrix} 0.400 \\ 0.600 \end{bmatrix}, \begin{bmatrix} 0.400 \\ 0.600 \end{bmatrix}, \dots$$

with 40% of the people using Brand A in the long run. Since

$$\begin{bmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{bmatrix} \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix} = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix},$$

once we reach this state, we don't leave. A state \vec{x} with $P\vec{x}=\vec{x}$ is called a steady state vector. We'll prove below that every Markov chain has a steady state vector!

Here's how to find it. We want to find $ec{x}$ such that $(I-P)ec{x}=ec{0}$. The augmented system is

$$[I-P\mid ec{0}\,] = \left[egin{array}{cc|c} 0.30 & -0.20 & 0 \ -0.30 & 0.20 & 0 \end{array}
ight]$$

which row reduces to

$$\left[\begin{array}{cc|c}1&-2/3&0\\0&0&0\end{array}\right]$$

The solution is

$$x_1=rac{2}{3}\,t,\quad x_2=t$$

We'd like a probability vector, so $\frac{2}{3}\,t+t=1$ which means that t=3/5. This gives $\vec x=\begin{bmatrix}0.4\\0.6\end{bmatrix}$ as we found above.

Theorem: Every Markov chain has a non-trivial steady state vector.

This appears in the book as Theorem 4.30 in Section 4.6.

Proof: Let P be the transition matrix. We want to find a non-trivial solution to $(I-P)\vec x=\vec 0$. By the fundamental theorem of invertible matrices and the fact that $\mathrm{rank}(I-P)=\mathrm{rank}((I-P)^T)$, this is equivalent to $(I-P)^T\vec x=\vec 0$ having a non-trivial solution. That is, finding a non-trivial $\vec x$ such that

$$P^T \vec{x} = \vec{x}$$
 (since $I^T = I$).

But since P is a stochastic matrix, we always have

$$P^T egin{bmatrix} 1 \ dots \ 1 \end{bmatrix} = egin{bmatrix} 1 \ dots \ 1 \end{bmatrix}$$

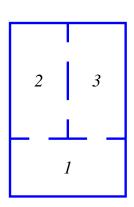
So therefore $P\vec{x}=\vec{x}$ also has a (different) non-trivial solution. \Box

Example 3.65: A Markov chain can have more than two states. A rat is in a maze with three rooms, and always chooses to go through one of the doors with equal probability. Draw the state diagram, determine the transition matrix P and describe how to find a steady-state vector.

Solution: Draw state diagram on board.

From this, we find the transition matrix

$$P = egin{bmatrix} 0 & 1/3 & 1/3 \ 1/2 & 0 & 2/3 \ 1/2 & 2/3 & 0 \end{bmatrix}$$



The P_{ij} entry is the probability of going from room j to room i.

A **steady state vector** is a vector \vec{x} such that $P\vec{x}=\vec{x}$. That is, $\vec{x}-P\vec{x}=\vec{0}$, or $(I-P)\vec{x}=\vec{0}$. To find a non-trivial steady state vector for this Markov chain, we solve the homogeneous system with coefficient matrix I-P:

$$\left[egin{array}{ccc|c} 1 & -1/3 & -1/3 & 0 \ -1/2 & 1 & -2/3 & 0 \ -1/2 & -2/3 & 1 & 0 \ \end{array}
ight]$$

In RREF:

$$\left[egin{array}{ccc|c} 1 & 0 & -2/3 & 0 \ 0 & 1 & -1 & 0 \ 0 & 0 & 0 & 0 \end{array}
ight]$$

So $x_3=t$, $x_2=t$ and $x_1=rac{2}{3}\,t$. If we want a probability vector, then we

want
$$t+t+rac{2}{3}\,t=1$$
, so $t=3/8$, so we get $egin{bmatrix} 2/8 \ 3/8 \ 3/8 \end{bmatrix}$.

We'll probably study Markov chains again in Section 4.6.